배낭 문제

배낭 문제에서는 주어진 값으로 일련의 항목을 포장해야 합니다. 최대 용량의 용기로 담을 수 있으며, 에서 자세한 내용을 확인하실 수 있습니다. 상품의 전체 크기가 용량을 초과하면 모두 포장할 수 없습니다. 이 경우 문제는 최대 전체 개수의 항목 중에서 크기에 맞게 조정됩니다.

다음 섹션에서는 OR 도구를 사용하여 배낭 문제를 해결하는 방법을 보여줍니다.

다음은 배낭 문제를 그래픽으로 나타낸 것입니다.

위 애니메이션에서는 50 항목이 상자로 패킹됩니다. 각 항목에는 값이 있음 (아이템 상의 숫자) 및 무게 (대략적인 면적에 비례)를 항목). Bin의 용량이 850인 것으로 선언되어 있으며, 목표는 이 세트를 찾는 것입니다. 용량을 초과하지 않고 총 가치를 극대화하는 항목의 수입니다.

다음 섹션에서는 배낭 문제를 해결하는 프로그램을 설명합니다. 전체 프로그램을 보려면 프로그램 완료를 참고하세요.

라이브러리 가져오기

다음 코드는 필요한 라이브러리를 가져옵니다.

Python

from ortools.algorithms.python import knapsack_solver

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

자바

import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

C#

using System;
using Google.OrTools.Algorithms;

데이터 만들기

아래 코드는 문제에 대한 데이터를 생성합니다.

Python

values = [
    # fmt:off
  360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
  78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
  87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
  312
    # fmt:on
]
weights = [
    # fmt: off
  [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
   42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
   3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
    # fmt: on
]
capacities = [850]

C++

std::vector<int64_t> values = {
    360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
    38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
    22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
    36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
    {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
     42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
     7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};

자바

final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
    78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
    78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
    0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
    65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};

C#

long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                  256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                  78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                      42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                      7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };

데이터에는 다음이 포함됩니다.

  • weights: 항목의 가중치를 포함하는 벡터입니다.
  • values: 항목의 값을 포함하는 벡터입니다.
  • capacities: 배낭의 용량인 항목이 하나만 있는 벡터입니다.

문제 해결사 선언

다음 코드는 배낭 문제입니다.

Python

solver = knapsack_solver.KnapsackSolver(
    knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample",
)

C++

KnapsackSolver solver(
    KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample");

자바

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

C#

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER 옵션은 해결자에게 다음과 같이 지시합니다. branch and bound 알고리즘을 사용하여 문제를 해결합니다.

문제 해결사 호출

다음 코드는 솔버를 호출하고 솔루션을 출력합니다.

Python

solver.init(values, weights, capacities)
computed_value = solver.solve()
packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
    if solver.best_solution_contains(i):
        packed_items.append(i)
        packed_weights.append(weights[0][i])
        total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

C++

solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
  if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
          std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
  packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
          std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
    std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";

자바

solver.init(values, weights, capacities);
final long computedValue = solver.solve();
ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
  if (solver.bestSolutionContains(i)) {
    packedItems.add(i);
    packedWeights.add(weights[0][i]);
    totalWeight = (int) (totalWeight + weights[0][i]);
  }
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);

C#

solver.Init(values, weights, capacities);
long computedValue = solver.Solve();
Console.WriteLine("Optimal Value = " + computedValue);

프로그램은 먼저 솔버를 초기화한 다음 computed_value = solver.Solve() 최적 해의 총값은 computed_value이며 동일합니다. 총 가중치로 설정합니다. 그런 다음 이 프로그램은 패킹된 항목을 다음과 같이 정리합니다.

packed_items = [x for x in range(0, len(weights[0]))
                  if solver.BestSolutionContains(x)]
항목 x가 포함된 경우 `solver.BestSolutionContains(x)` 는 `TRUE` 를 반환하므로 솔루션에서 `packed_items` 는 최적의 포장 항목의 목록입니다. 마찬가지로 `packed_weights` 는 포장된 항목의 가중치입니다. ### 프로그램의 출력 프로그램의 출력은 다음과 같습니다.
Total value = 7534
Total weight: 850
Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31,
               32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4,
                 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]

프로그램 이수

다음은 배낭 문제를 해결하는 전체 프로그램입니다.

Python

from ortools.algorithms.python import knapsack_solver


def main():
    # Create the solver.
    solver = knapsack_solver.KnapsackSolver(
        knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
        "KnapsackExample",
    )

    values = [
        # fmt:off
      360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
      78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
      87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
      312
        # fmt:on
    ]
    weights = [
        # fmt: off
      [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
       42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
       3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
        # fmt: on
    ]
    capacities = [850]

    solver.init(values, weights, capacities)
    computed_value = solver.solve()

    packed_items = []
    packed_weights = []
    total_weight = 0
    print("Total value =", computed_value)
    for i in range(len(values)):
        if solver.best_solution_contains(i):
            packed_items.append(i)
            packed_weights.append(weights[0][i])
            total_weight += weights[0][i]
    print("Total weight:", total_weight)
    print("Packed items:", packed_items)
    print("Packed_weights:", packed_weights)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

namespace operations_research {
void RunKnapsackExample() {
  // Instantiate the solver.
  KnapsackSolver solver(
      KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
      "KnapsackExample");

  std::vector<int64_t> values = {
      360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
      38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
      22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
      36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

  std::vector<std::vector<int64_t>> weights = {
      {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
       42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
       7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

  std::vector<int64_t> capacities = {850};

  solver.Init(values, weights, capacities);
  int64_t computed_value = solver.Solve();

  // Print solution
  std::vector<int> packed_items;
  for (std::size_t i = 0; i < values.size(); ++i) {
    if (solver.BestSolutionContains(i)) packed_items.push_back(i);
  }
  std::ostringstream packed_items_ss;
  std::copy(packed_items.begin(), packed_items.end() - 1,
            std::ostream_iterator<int>(packed_items_ss, ", "));
  packed_items_ss << packed_items.back();

  std::vector<int64_t> packed_weights;
  packed_weights.reserve(packed_items.size());
  for (const auto& it : packed_items) {
    packed_weights.push_back(weights[0][it]);
  }
  std::ostringstream packed_weights_ss;
  std::copy(packed_weights.begin(), packed_weights.end() - 1,
            std::ostream_iterator<int>(packed_weights_ss, ", "));
  packed_weights_ss << packed_weights.back();

  int64_t total_weights =
      std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

  LOG(INFO) << "Total value: " << computed_value;
  LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
  LOG(INFO) << "Total weight: " << total_weights;
  LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::RunKnapsackExample();
  return EXIT_SUCCESS;
}

자바

package com.google.ortools.algorithms.samples;
import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

/**
 * Sample showing how to model using the knapsack solver.
 */
public class Knapsack {
  private Knapsack() {}

  private static void solve() {
    KnapsackSolver solver = new KnapsackSolver(
        KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

    final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
        78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
        78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

    final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
        0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
        65, 0, 79, 20, 65, 52, 13}};

    final long[] capacities = {850};

    solver.init(values, weights, capacities);
    final long computedValue = solver.solve();

    ArrayList<Integer> packedItems = new ArrayList<>();
    ArrayList<Long> packedWeights = new ArrayList<>();
    int totalWeight = 0;
    System.out.println("Total value = " + computedValue);
    for (int i = 0; i < values.length; i++) {
      if (solver.bestSolutionContains(i)) {
        packedItems.add(i);
        packedWeights.add(weights[0][i]);
        totalWeight = (int) (totalWeight + weights[0][i]);
      }
    }
    System.out.println("Total weight: " + totalWeight);
    System.out.println("Packed items: " + packedItems);
    System.out.println("Packed weights: " + packedWeights);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    Knapsack.solve();
  }
}

C#

using System;
using Google.OrTools.Algorithms;

public class Knapsack
{
    static void Main()
    {
        KnapsackSolver solver = new KnapsackSolver(
            KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

        long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                          256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                          78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

        long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                              42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                              7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

        long[] capacities = { 850 };

        solver.Init(values, weights, capacities);
        long computedValue = solver.Solve();

        Console.WriteLine("Optimal Value = " + computedValue);
    }
}