Problem Knapsack

W ramach problemu z plecakami musisz zapakować zestaw przedmiotów z podanymi wartościami i rozmiarów (takich jak waga czy objętość) do pojemników o maksymalnej pojemności , Jeśli łączny rozmiar produktów przekracza limit, nie możesz ich zapakować. W takim przypadku chodzi o wybranie podzbioru elementów o maksymalnej wartości łącznej która mieści się w kontenerze.

W sekcjach poniżej pokazujemy, jak rozwiązać fikcyjne zadania z użyciem narzędzi OR.

Przykład

Oto graficzne przedstawienie pudełka:

Na tej animacji 50 elementu zapakowano do kosza. Każdy element ma wartość (liczbę na produkcie) oraz wagę (mniej więcej proporcjonalną do powierzchni ). Zadeklarowano, że ten przedział ma pojemność 850. Naszym celem jest znalezienie zestawu produktów, które zmaksymalizują łączną wartość bez przekraczania pojemności.

W kolejnych sekcjach opisano programy, które rozwiązują problemy związane z drobnymi sprawami. Pełną listę programów znajdziesz w artykule Ukończenie programów.

Zaimportuj biblioteki

Poniższy kod importuje wymagane biblioteki.

Python

from ortools.algorithms.python import knapsack_solver

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

C#

using System;
using Google.OrTools.Algorithms;

Tworzenie danych

Poniższy kod tworzy dane dotyczące problemu.

Python

values = [
    # fmt:off
  360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
  78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
  87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
  312
    # fmt:on
]
weights = [
    # fmt: off
  [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
   42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
   3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
    # fmt: on
]
capacities = [850]

C++

std::vector<int64_t> values = {
    360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
    38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
    22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
    36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
    {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
     42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
     7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};

Java

final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
    78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
    78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
    0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
    65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};

C#

long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                  256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                  78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                      42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                      7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };

Dane te obejmują:

  • weights: wektor zawierający wagi elementów.
  • values: wektor zawierający wartości elementów.
  • capacities: wektor z tylko jednym wpisem, czyli pojemność plecaka.

Zadeklarowanie rozwiązania

Poniższy kod deklaruje „praktycznego rozwiązania”, czyli specjalistyczne narzędzie do drobiazgi.

Python

solver = knapsack_solver.KnapsackSolver(
    knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample",
)

C++

KnapsackSolver solver(
    KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample");

Java

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

C#

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

Opcja KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER nakazuje rozwiązanie do rozwiązania zadania za pomocą algorytmu branch and bound.

Zadzwoń do rozwiązania

Poniższy kod wywołuje i wydrukuje rozwiązanie.

Python

solver.init(values, weights, capacities)
computed_value = solver.solve()
packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
    if solver.best_solution_contains(i):
        packed_items.append(i)
        packed_weights.append(weights[0][i])
        total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

C++

solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
  if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
          std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
  packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
          std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
    std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";

Java

solver.init(values, weights, capacities);
final long computedValue = solver.solve();
ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
  if (solver.bestSolutionContains(i)) {
    packedItems.add(i);
    packedWeights.add(weights[0][i]);
    totalWeight = (int) (totalWeight + weights[0][i]);
  }
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);

C#

solver.Init(values, weights, capacities);
long computedValue = solver.Solve();
Console.WriteLine("Optimal Value = " + computedValue);

Program najpierw inicjuje rozwiązanie, a następnie wywołuje je przez computed_value = solver.Solve() Łączna wartość rozwiązania optymalnego to computed_value, czyli tyle samo jako waga całkowita. Następnie program uzyskuje indeksy spakowanych elementów w taki sposób:

packed_items = [x for x in range(0, len(weights[0]))
                  if solver.BestSolutionContains(x)]
Ponieważ „solver.BestSolutionContains(x)” zwraca wartość „TRUE”, jeśli podano element x w rozwiązaniu „packed_items” to lista optymalnych zapakowanych produktów. Podobnie „packed_weights” określa wagę zapakowanych produktów. ### Efekt programu Oto dane wyjściowe programu.
Total value = 7534
Total weight: 850
Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31,
               32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4,
                 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]

Kompletne programy

Poniżej znajduje się kompletna lista programów, które rozwiązują ten problem.

Python

from ortools.algorithms.python import knapsack_solver


def main():
    # Create the solver.
    solver = knapsack_solver.KnapsackSolver(
        knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
        "KnapsackExample",
    )

    values = [
        # fmt:off
      360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
      78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
      87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
      312
        # fmt:on
    ]
    weights = [
        # fmt: off
      [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
       42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
       3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
        # fmt: on
    ]
    capacities = [850]

    solver.init(values, weights, capacities)
    computed_value = solver.solve()

    packed_items = []
    packed_weights = []
    total_weight = 0
    print("Total value =", computed_value)
    for i in range(len(values)):
        if solver.best_solution_contains(i):
            packed_items.append(i)
            packed_weights.append(weights[0][i])
            total_weight += weights[0][i]
    print("Total weight:", total_weight)
    print("Packed items:", packed_items)
    print("Packed_weights:", packed_weights)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

namespace operations_research {
void RunKnapsackExample() {
  // Instantiate the solver.
  KnapsackSolver solver(
      KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
      "KnapsackExample");

  std::vector<int64_t> values = {
      360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
      38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
      22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
      36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

  std::vector<std::vector<int64_t>> weights = {
      {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
       42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
       7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

  std::vector<int64_t> capacities = {850};

  solver.Init(values, weights, capacities);
  int64_t computed_value = solver.Solve();

  // Print solution
  std::vector<int> packed_items;
  for (std::size_t i = 0; i < values.size(); ++i) {
    if (solver.BestSolutionContains(i)) packed_items.push_back(i);
  }
  std::ostringstream packed_items_ss;
  std::copy(packed_items.begin(), packed_items.end() - 1,
            std::ostream_iterator<int>(packed_items_ss, ", "));
  packed_items_ss << packed_items.back();

  std::vector<int64_t> packed_weights;
  packed_weights.reserve(packed_items.size());
  for (const auto& it : packed_items) {
    packed_weights.push_back(weights[0][it]);
  }
  std::ostringstream packed_weights_ss;
  std::copy(packed_weights.begin(), packed_weights.end() - 1,
            std::ostream_iterator<int>(packed_weights_ss, ", "));
  packed_weights_ss << packed_weights.back();

  int64_t total_weights =
      std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

  LOG(INFO) << "Total value: " << computed_value;
  LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
  LOG(INFO) << "Total weight: " << total_weights;
  LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::RunKnapsackExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.algorithms.samples;
import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

/**
 * Sample showing how to model using the knapsack solver.
 */
public class Knapsack {
  private Knapsack() {}

  private static void solve() {
    KnapsackSolver solver = new KnapsackSolver(
        KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

    final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
        78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
        78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

    final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
        0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
        65, 0, 79, 20, 65, 52, 13}};

    final long[] capacities = {850};

    solver.init(values, weights, capacities);
    final long computedValue = solver.solve();

    ArrayList<Integer> packedItems = new ArrayList<>();
    ArrayList<Long> packedWeights = new ArrayList<>();
    int totalWeight = 0;
    System.out.println("Total value = " + computedValue);
    for (int i = 0; i < values.length; i++) {
      if (solver.bestSolutionContains(i)) {
        packedItems.add(i);
        packedWeights.add(weights[0][i]);
        totalWeight = (int) (totalWeight + weights[0][i]);
      }
    }
    System.out.println("Total weight: " + totalWeight);
    System.out.println("Packed items: " + packedItems);
    System.out.println("Packed weights: " + packedWeights);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    Knapsack.solve();
  }
}

C#

using System;
using Google.OrTools.Algorithms;

public class Knapsack
{
    static void Main()
    {
        KnapsackSolver solver = new KnapsackSolver(
            KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

        long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                          256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                          78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

        long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                              42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                              7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

        long[] capacities = { 850 };

        solver.Init(values, weights, capacities);
        long computedValue = solver.Solve();

        Console.WriteLine("Optimal Value = " + computedValue);
    }
}