ในปัญหา Knapsack คุณต้องบรรจุชุดสินค้าพร้อมค่าที่ระบุ และขนาด (เช่น น้ำหนักหรือปริมาตร) ลงในคอนเทนเนอร์ที่มีความจุสูงสุด ที่ใช้เวลาเพียง 2 นาที คุณจะบรรจุหีบห่อทั้งหมดได้หากสินค้ามีขนาดรวมเกินขีดจำกัด ในกรณีนี้ ปัญหาคือการเลือกรายการย่อยจากยอดรวมสูงสุด ที่จะพอดีกับคอนเทนเนอร์
ส่วนต่อไปนี้จะแสดงวิธีแก้ปัญหากระเป๋าเป้โดยใช้เครื่องมือ OR
ตัวอย่าง
ต่อไปนี้เป็นการแสดงภาพของปัญหาเป้ล่ม:
ในภาพเคลื่อนไหวข้างต้น รูปภาพ 50
รายการได้รับการบรรจุลงในถังขยะ แต่ละรายการมีค่า
(ตัวเลขบนสินค้า) และน้ำหนัก (เป็นสัดส่วนคร่าวๆ กับพื้นที่ของ
รายการ)
ประกาศว่า Bin รองรับได้ 850
และเป้าหมายของเราคือการค้นหาเซ็ต
ที่จะเพิ่มมูลค่ารวมให้สูงสุดโดยไม่เกินขีดจำกัด
ส่วนต่อไปนี้จะอธิบายโปรแกรมที่ช่วยแก้ปัญหาเป้ าหมาย โปรดดูโปรแกรมฉบับเต็มในหัวข้อโปรแกรมที่สมบูรณ์
นำเข้าไลบรารี
โค้ดต่อไปนี้นำเข้าไลบรารีที่จำเป็น
Python
from ortools.algorithms.python import knapsack_solver
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList;
C#
using System; using Google.OrTools.Algorithms;
สร้างข้อมูล
โค้ดด้านล่างจะสร้างข้อมูลของปัญหา
Python
values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850]
C++
std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850};
Java
final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850};
C#
long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 };
ข้อมูลประกอบด้วยข้อมูลต่อไปนี้
weights
: เวกเตอร์ที่มีน้ำหนักของรายการต่างๆvalues
: เวกเตอร์ที่มีค่าของรายการcapacities
: เวกเตอร์ที่มีเพียงหนึ่งรายการ ความจุของเป้
ประกาศเครื่องมือแก้โจทย์
โค้ดต่อไปนี้จะกล่าวถึงโปรแกรมแก้โจทย์ Knapsack ซึ่งเป็นเครื่องมือแก้โจทย์เฉพาะสำหรับ ปัญหาขาดหาย
Python
solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", )
C++
KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
Java
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");
C#
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
ตัวเลือกที่ KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER
จะแจ้งให้เครื่องมือแก้โจทย์
ใช้อัลกอริทึมแบบ Branch and bound ในการแก้โจทย์
โทรหาเครื่องมือแก้โจทย์
โค้ดต่อไปนี้จะเรียกใช้เครื่องมือแก้โจทย์และพิมพ์โซลูชัน
Python
solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights)
C++
solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
Java
solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights);
C#
solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue);
โปรแกรมจะเริ่มต้นโปรแกรมแก้โจทย์ก่อน แล้วจึงเรียกโปรแกรมโดย
computed_value = solver.Solve()
มูลค่ารวมของโซลูชันที่ดีที่สุดคือ computed_value
ซึ่งเท่ากับ
เป็นน้ำหนักรวมในกรณีนี้ จากนั้นโปรแกรมจะได้รับดัชนี
ในโซลูชันได้ดังนี้
packed_items = [x for x in range(0, len(weights[0])) if solver.BestSolutionContains(x)]เนื่องจาก "solver.BestSolutionContains(x)" แสดงผล "TRUE" หากมีรายการ x รวมอยู่ด้วย ในโซลูชัน "pack_items" คือรายการสินค้าที่บรรจุที่เหมาะสมที่สุด ในทำนองเดียวกัน "pack_weights" คือน้ำหนักของสินค้าที่มีการบรรจุหีบห่อ ### เอาต์พุตของโปรแกรม ต่อไปนี้เป็นเอาต์พุตของโปรแกรม
Total value = 7534 Total weight: 850 Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31, 32, 34, 38, 39, 41, 42, 44, 47, 48, 49] Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4, 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]
จบโปรแกรม
ด้านล่างนี้คือโปรแกรมทั้งหมดช่วยแก้ปัญหาเป้ าหมาย
Python
from ortools.algorithms.python import knapsack_solver def main(): # Create the solver. solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", ) values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850] solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h" namespace operations_research { void RunKnapsackExample() { // Instantiate the solver. KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850}; solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); // Print solution std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}"; } } // namespace operations_research int main(int argc, char** argv) { operations_research::RunKnapsackExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.algorithms.samples; import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList; /** * Sample showing how to model using the knapsack solver. */ public class Knapsack { private Knapsack() {} private static void solve() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test"); final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850}; solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); Knapsack.solve(); } }
C#
using System; using Google.OrTools.Algorithms; public class Knapsack { static void Main() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 }; solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue); } }