Sırt çantası probleminde, verilen değerlerle bir dizi öğeyi paketlemeniz gerekir. ve boyutları (ağırlıklar veya hacimler gibi) maksimum kapasiteye sahip bir container'a , Öğelerin toplam boyutu kapasiteyi aşarsa tümünü paketleyemezsiniz. Bu durumda sorun, maksimum toplamın bir alt kümesini seçmektir. değer ekleyin.
Aşağıdaki bölümlerde, VEYA Araçları'nı kullanarak bir sırt probleminin nasıl çözüleceği gösterilmektedir.
Örnek
Sırt çantasıyla ilgili bir sorunun grafiksel olarak tasviri şu şekildedir:
Yukarıdaki animasyonda 50
öğe bir bölmeye yerleştirilmiş. Her öğenin bir değeri var
(öğenin üzerindeki sayı) ve bir ağırlık (öğenin alanıyla yaklaşık olarak orantılıdır)
öğesi).
Kutunun 850
kapasitesi olduğu açıklandı ve amacımız seti bulmak
Kapasiteyi aşmadan toplam değeri maksimuma çıkaracak öğelerdir.
Aşağıdaki bölümlerde sırt çantasındaki bir sorunu çözen programlar açıklanmaktadır. Programların tam listesi için Programları tamamlama başlıklı makaleye bakın.
Kitaplıkları içe aktarma
Aşağıdaki kodda gerekli kitaplıkları içe aktarır.
Python
from ortools.algorithms.python import knapsack_solver
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList;
C#
using System; using Google.OrTools.Algorithms;
Verileri oluşturma
Aşağıdaki kod, soruna ilişkin verileri oluşturur.
Python
values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850]
C++
std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850};
Java
final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850};
C#
long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 };
Veriler şunları içerir:
weights
: Öğelerin ağırlıklarını içeren bir vektör.values
: Öğelerin değerlerini içeren bir vektör.capacities
: Yalnızca tek girişli bir vektör, sırt çantasının kapasitesi.
Çözücüyü tanımlama
Aşağıdaki kodda, Sırt Örgütü için özel bir çözücü olan sırt çantası çözücü sırt çantası sorunları.
Python
solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", )
C++
KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
Java
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");
C#
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER
seçeneği, çözücüye şunları söyler:
problemi çözmek için dalga ve sınırlama algoritmasını kullanın.
Çözücüyü çağırın
Aşağıdaki kod çözücüyü çağırır ve çözümü yazdırır.
Python
solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights)
C++
solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
Java
solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights);
C#
solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue);
Program önce çözücüyü başlatır ve ardından problemi
computed_value = solver.Solve()
Optimum çözümün toplam değeri computed_value
şeklindedir ve aynıdır.
kullanabilirsiniz. Program daha sonra Google Ads'in
paketlenen öğeler aşağıdaki gibi çözümlenir:
packed_items = [x for x in range(0, len(weights[0])) if solver.BestSolutionContains(x)]"solver.BestSolutionContains(x)(x)", x öğesi dahil edilirse "TRUE" değerini döndürür "pack_items", en uygun şekilde paketlenen öğelerin listesidir. Benzer şekilde, "paket_ağırlıkları" paketlenmiş öğelerin ağırlıklarıdır. ### Programın çıkışı İşte programın çıktısı.
Total value = 7534 Total weight: 850 Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31, 32, 34, 38, 39, 41, 42, 44, 47, 48, 49] Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4, 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]
Programları tamamlama
Sırt çantası sorununu çözen programların tamamını aşağıda bulabilirsiniz.
Python
from ortools.algorithms.python import knapsack_solver def main(): # Create the solver. solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", ) values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850] solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h" namespace operations_research { void RunKnapsackExample() { // Instantiate the solver. KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850}; solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); // Print solution std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}"; } } // namespace operations_research int main(int argc, char** argv) { operations_research::RunKnapsackExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.algorithms.samples; import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList; /** * Sample showing how to model using the knapsack solver. */ public class Knapsack { private Knapsack() {} private static void solve() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test"); final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850}; solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); Knapsack.solve(); } }
C#
using System; using Google.OrTools.Algorithms; public class Knapsack { static void Main() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 }; solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue); } }