Resolución de un problema de mochila múltiples

En esta sección, se muestra cómo resolver el problema de varias mochilas con el solucionador MIP y el solucionador CP-SAT. En este caso, es común referirse a los contenedores como contenedores, en lugar que las mochilas.

En el siguiente ejemplo, se muestra cómo encontrar la forma óptima de empaquetar los elementos en cinco contenedores.

Ejemplo

Al igual que en el ejemplo anterior, se comienza con un una colección de elementos de diversos pesos y valores. El problema es armar una un subconjunto de los elementos en cinco discretizaciones, cada una de las cuales tiene una capacidad máxima de 100, para que el valor total del empaquetado sea un máximo.

En las siguientes secciones, se presentan secciones de programas que resuelven este problema. Para ver los programas completos, consulta Programas completos.

Solución MIP

En las siguientes secciones, se describe cómo resolver el problema usando la Wrapper de MPSolver:

Importa las bibliotecas

El siguiente código importa las bibliotecas necesarias.

Python

from ortools.linear_solver import pywraplp

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

Crea los datos

Con el siguiente código, se crean los datos para el problema.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
data["num_items"] = len(data["weights"])
data["all_items"] = range(data["num_items"])

data["bin_capacities"] = [100, 100, 100, 100, 100]
data["num_bins"] = len(data["bin_capacities"])
data["all_bins"] = range(data["num_bins"])

C++

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = weights.size();
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = bin_capacities.size();
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

Java

final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final double[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

C#

double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

double[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

Entre los datos, se incluyen los siguientes:

  • weights: Es un vector que contiene los pesos de los elementos.
  • values: Es un vector que contiene los valores de los elementos.
  • capacities: Es un vector que contiene las capacidades de los discretizaciones.

En este ejemplo, todos los discretizaciones tienen la misma capacidad, aunque no es necesario que sea así. en general.

Cómo declarar el solucionador de MIP

El siguiente código declara el solucionador de MIP.

Python

solver = pywraplp.Solver.CreateSolver("SCIP")
if solver is None:
    print("SCIP solver unavailable.")
    return

C++

  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

// Create the linear solver with the SCIP backend.
Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

Crea las variables

Con el siguiente código, se crean las variables para el problema.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data["all_items"]:
    for b in data["all_bins"]:
        x[i, b] = solver.BoolVar(f"x_{i}_{b}")

C++

// x[i][b] = 1 if item i is packed in bin b.
std::vector<std::vector<const MPVariable*>> x(
    num_items, std::vector<const MPVariable*>(num_bins));
for (int i : all_items) {
  for (int b : all_bins) {
    x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
  }
}

Java

MPVariable[][] x = new MPVariable[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
  }
}

C#

Variable[,] x = new Variable[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
    }
}

Cada x[(i, j)] es una variable de 0 a 1, en la que i es un elemento y j es una discretización. En la solución, x[(i, j)] será 1 si el elemento i se coloca en la bandeja j y 0. de lo contrario.

Define las restricciones

El siguiente código define las restricciones del problema:

Python

# Each item is assigned to at most one bin.
for i in data["all_items"]:
    solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

# The amount packed in each bin cannot exceed its capacity.
for b in data["all_bins"]:
    solver.Add(
        sum(x[i, b] * data["weights"][i] for i in data["all_items"])
        <= data["bin_capacities"][b]
    )

C++

// Each item is assigned to at most one bin.
for (int i : all_items) {
  LinearExpr sum;
  for (int b : all_bins) {
    sum += x[i][b];
  }
  solver->MakeRowConstraint(sum <= 1.0);
}
// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += LinearExpr(x[i][b]) * weights[i];
  }
  solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
}

Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int b : allBins) {
    constraint.setCoefficient(x[i][b], 1);
  }
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
  for (int i : allItems) {
    constraint.setCoefficient(x[i][b], weights[i]);
  }
}

C#

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int b in allBins)
    {
        constraint.SetCoefficient(x[i, b], 1);
    }
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
    foreach (int i in allItems)
    {
        constraint.SetCoefficient(x[i, b], Weights[i]);
    }
}

Las restricciones son las siguientes:

  • Cada elemento puede colocarse como máximo en una bandeja. Esta restricción la establece lo que requiere que la suma de x[i, j] en todas las discretizaciones j sea menor o igual que a 1.
  • El peso total empaquetado en cada depósito no puede exceder su capacidad. Esta Para establecer la restricción, se solicita la suma de los pesos de los elementos que se colocan en la bandeja. j debe ser menor o igual que la capacidad del contenedor.

Define el objetivo

El siguiente código define la función objetiva para el problema, que es el valor total de los artículos empaquetados.

Python

# Maximize total value of packed items.
objective = solver.Objective()
for i in data["all_items"]:
    for b in data["all_bins"]:
        objective.SetCoefficient(x[i, b], data["values"][i])
objective.SetMaximization()

C++

// Maximize total value of packed items.
MPObjective* const objective = solver->MutableObjective();
LinearExpr objective_value;
for (int i : all_items) {
  for (int b : all_bins) {
    objective_value += LinearExpr(x[i][b]) * values[i];
  }
}
objective->MaximizeLinearExpr(objective_value);

Java

// Maximize total value of packed items.
MPObjective objective = solver.objective();
for (int i : allItems) {
  for (int b : allBins) {
    objective.setCoefficient(x[i][b], values[i]);
  }
}
objective.setMaximization();

C#

Objective objective = solver.Objective();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        objective.SetCoefficient(x[i, b], Values[i]);
    }
}
objective.SetMaximization();

Ten en cuenta que x[i, j] * data['values'][i] agrega el valor del elemento i al objetivo si el elemento se coloca en la bandeja j. Si i no se coloca en ningún depósito, su valor no contribuye al objetivo.

Invocar el solucionador

El siguiente código invoca la herramienta de resolución.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

final MPSolver.ResultStatus status = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

El siguiente código imprime la solución al problema.

Python

if status == pywraplp.Solver.OPTIMAL:
    print(f"Total packed value: {objective.Value()}")
    total_weight = 0
    for b in data["all_bins"]:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in data["all_items"]:
            if x[i, b].solution_value() > 0:
                print(
                    f"Item {i} weight: {data['weights'][i]} value:"
                    f" {data['values'][i]}"
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++

if (result_status == MPSolver::OPTIMAL) {
  LOG(INFO) << "Total packed value: " << objective->Value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      if (x[i][b]->solution_value() > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

Java

// Check that the problem has an optimal solution.
if (status == MPSolver.ResultStatus.OPTIMAL) {
  System.out.println("Total packed value: " + objective.value());
  double totalWeight = 0;
  for (int b : allBins) {
    double binWeight = 0;
    double binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (x[i][b].solutionValue() == 1) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

// Check that the problem has an optimal solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL)
{
    Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine("Bin " + b);
        foreach (int i in allItems)
        {
            if (x[i, b].SolutionValue() == 1)
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("The problem does not have an optimal solution!");
}

Para cada discretización, el código muestra los elementos colocados en ella, así como los el valor total y el peso. El código también muestra el valor total general y de los artículos empaquetados.

Cuando ejecutes el programa, se mostrará el siguiente resultado.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

Completar programas

A continuación, se muestran los programas completos para varias mochilas.

Python

"""Solve a multiple knapsack problem using a MIP solver."""
from ortools.linear_solver import pywraplp


def main():
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    data["num_items"] = len(data["weights"])
    data["all_items"] = range(data["num_items"])

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    data["num_bins"] = len(data["bin_capacities"])
    data["all_bins"] = range(data["num_bins"])

    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")
    if solver is None:
        print("SCIP solver unavailable.")
        return

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in data["all_items"]:
        for b in data["all_bins"]:
            x[i, b] = solver.BoolVar(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in data["all_items"]:
        solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

    # The amount packed in each bin cannot exceed its capacity.
    for b in data["all_bins"]:
        solver.Add(
            sum(x[i, b] * data["weights"][i] for i in data["all_items"])
            <= data["bin_capacities"][b]
        )

    # Objective.
    # Maximize total value of packed items.
    objective = solver.Objective()
    for i in data["all_items"]:
        for b in data["all_bins"]:
            objective.SetCoefficient(x[i, b], data["values"][i])
    objective.SetMaximization()

    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    if status == pywraplp.Solver.OPTIMAL:
        print(f"Total packed value: {objective.Value()}")
        total_weight = 0
        for b in data["all_bins"]:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in data["all_items"]:
                if x[i, b].solution_value() > 0:
                    print(
                        f"Item {i} weight: {data['weights'][i]} value:"
                        f" {data['values'][i]}"
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++

// Solve a multiple knapsack problem using a MIP solver.
#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {

void MultipleKnapsackMip() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = weights.size();
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = bin_capacities.size();
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables.
  // x[i][b] = 1 if item i is packed in bin b.
  std::vector<std::vector<const MPVariable*>> x(
      num_items, std::vector<const MPVariable*>(num_bins));
  for (int i : all_items) {
    for (int b : all_bins) {
      x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    LinearExpr sum;
    for (int b : all_bins) {
      sum += x[i][b];
    }
    solver->MakeRowConstraint(sum <= 1.0);
  }
  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += LinearExpr(x[i][b]) * weights[i];
    }
    solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  MPObjective* const objective = solver->MutableObjective();
  LinearExpr objective_value;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective_value += LinearExpr(x[i][b]) * values[i];
    }
  }
  objective->MaximizeLinearExpr(objective_value);

  const MPSolver::ResultStatus result_status = solver->Solve();

  if (result_status == MPSolver::OPTIMAL) {
    LOG(INFO) << "Total packed value: " << objective->Value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        if (x[i][b]->solution_value() > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::MultipleKnapsackMip();
  return EXIT_SUCCESS;
}

Java

// Solve a multiple knapsack problem using a MIP solver.
package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** Multiple knapsack problem. */
public class MultipleKnapsackMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final double[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables.
    MPVariable[][] x = new MPVariable[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int b : allBins) {
        constraint.setCoefficient(x[i][b], 1);
      }
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
      for (int i : allItems) {
        constraint.setCoefficient(x[i][b], weights[i]);
      }
    }

    // Objective.
    // Maximize total value of packed items.
    MPObjective objective = solver.objective();
    for (int i : allItems) {
      for (int b : allBins) {
        objective.setCoefficient(x[i][b], values[i]);
      }
    }
    objective.setMaximization();

    final MPSolver.ResultStatus status = solver.solve();

    // Check that the problem has an optimal solution.
    if (status == MPSolver.ResultStatus.OPTIMAL) {
      System.out.println("Total packed value: " + objective.value());
      double totalWeight = 0;
      for (int b : allBins) {
        double binWeight = 0;
        double binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (x[i][b].solutionValue() == 1) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackMip() {}
}

C#

// Solve a multiple knapsack problem using a MIP solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class MultipleKnapsackMip
{
    public static void Main()
    {
        // Instantiate the data problem.
        double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        double[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Create the linear solver with the SCIP backend.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        Variable[,] x = new Variable[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int b in allBins)
            {
                constraint.SetCoefficient(x[i, b], 1);
            }
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
            foreach (int i in allItems)
            {
                constraint.SetCoefficient(x[i, b], Weights[i]);
            }
        }

        // Objective.
        Objective objective = solver.Objective();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                objective.SetCoefficient(x[i, b], Values[i]);
            }
        }
        objective.SetMaximization();

        Solver.ResultStatus resultStatus = solver.Solve();

        // Check that the problem has an optimal solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL)
        {
            Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine("Bin " + b);
                foreach (int i in allItems)
                {
                    if (x[i, b].SolutionValue() == 1)
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("The problem does not have an optimal solution!");
        }
    }
}

Solución de SAT de CP

En las siguientes secciones, se describe cómo resolver el problema con el solucionador de problemas CP-SAT.

Importa las bibliotecas

El siguiente código importa las bibliotecas necesarias.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}

Declara el modelo

En el siguiente código, se declara el modelo CP-SAT.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Crea los datos

El siguiente código configura los datos para el problema.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
num_items = len(data["weights"])
all_items = range(num_items)

data["bin_capacities"] = [100, 100, 100, 100, 100]
num_bins = len(data["bin_capacities"])
all_bins = range(num_bins)

C++

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = static_cast<int>(weights.size());
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = static_cast<int>(bin_capacities.size());
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

Java

final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final int[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

C#

int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

int[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

El array costs corresponde a la tabla de costos. para asignar trabajadores a las tareas, como se muestra arriba.

Crea las variables

Con el siguiente código, se crean variables de números enteros binarios para el problema.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in all_items:
    for b in all_bins:
        x[i, b] = model.new_bool_var(f"x_{i}_{b}")

C++

// x[i, b] = 1 if item i is packed in bin b.
std::map<std::tuple<int, int>, BoolVar> x;
for (int i : all_items) {
  for (int b : all_bins) {
    auto key = std::make_tuple(i, b);
    x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
  }
}

Java

Literal[][] x = new Literal[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = model.newBoolVar("x_" + i + "_" + b);
  }
}

C#

ILiteral[,] x = new ILiteral[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = model.NewBoolVar($"x_{i}_{b}");
    }
}

Crea las restricciones

El siguiente código crea las restricciones para el problema.

Python

# Each item is assigned to at most one bin.
for i in all_items:
    model.add_at_most_one(x[i, b] for b in all_bins)

# The amount packed in each bin cannot exceed its capacity.
for b in all_bins:
    model.add(
        sum(x[i, b] * data["weights"][i] for i in all_items)
        <= data["bin_capacities"][b]
    )

C++

// Each item is assigned to at most one bin.
for (int i : all_items) {
  std::vector<BoolVar> copies;
  for (int b : all_bins) {
    copies.push_back(x[std::make_tuple(i, b)]);
  }
  cp_model.AddAtMostOne(copies);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += x[std::make_tuple(i, b)] * weights[i];
  }
  cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
}

Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  List<Literal> bins = new ArrayList<>();
  for (int b : allBins) {
    bins.add(x[i][b]);
  }
  model.addAtMostOne(bins);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  LinearExprBuilder load = LinearExpr.newBuilder();
  for (int i : allItems) {
    load.addTerm(x[i][b], weights[i]);
  }
  model.addLessOrEqual(load, binCapacities[b]);
}

C#

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    List<ILiteral> literals = new List<ILiteral>();
    foreach (int b in allBins)
    {
        literals.Add(x[i, b]);
    }
    model.AddAtMostOne(literals);
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    List<ILiteral> items = new List<ILiteral>();
    foreach (int i in allItems)
    {
        items.Add(x[i, b]);
    }
    model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
}

Crea la función objetiva

Con el siguiente código, se crea la función objetiva para el problema.

Python

# maximize total value of packed items.
objective = []
for i in all_items:
    for b in all_bins:
        objective.append(cp_model.LinearExpr.term(x[i, b], data["values"][i]))
model.maximize(cp_model.LinearExpr.sum(objective))

C++

// Maximize total value of packed items.
LinearExpr objective;
for (int i : all_items) {
  for (int b : all_bins) {
    objective += x[std::make_tuple(i, b)] * values[i];
  }
}
cp_model.Maximize(objective);

Java

// Maximize total value of packed items.
LinearExprBuilder obj = LinearExpr.newBuilder();
for (int i : allItems) {
  for (int b : allBins) {
    obj.addTerm(x[i][b], values[i]);
  }
}
model.maximize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        obj.AddTerm(x[i, b], Values[i]);
    }
}
model.Maximize(obj);

El valor de la función objetivo es el costo total de todas las variables a las que se les asigna valor 1 por el solucionador.

Invocar el solucionador

El siguiente código invoca la herramienta de resolución.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
final CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

El siguiente código imprime la solución al problema.

Python

if status == cp_model.OPTIMAL:
    print(f"Total packed value: {solver.objective_value}")
    total_weight = 0
    for b in all_bins:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in all_items:
            if solver.value(x[i, b]) > 0:
                print(
                    f'Item:{i} weight:{data["weights"][i]} value:{data["values"][i]}'
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Total packed value: " << response.objective_value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      auto key = std::make_tuple(i, b);
      if (SolutionIntegerValue(response, x[key]) > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

Java

// Check that the problem has an optimal solution.
if (status == CpSolverStatus.OPTIMAL) {
  System.out.println("Total packed value: " + solver.objectiveValue());
  long totalWeight = 0;
  for (int b : allBins) {
    long binWeight = 0;
    long binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (solver.booleanValue(x[i][b])) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine($"Bin {b}");
        foreach (int i in allItems)
        {
            if (solver.BooleanValue(x[i, b]))
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("No solution found.");
}

Este es el resultado del programa.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

Completar programas

Estos son los programas completos para la solución CP-SAT.

Python

"""Solves a multiple knapsack problem using the CP-SAT solver."""
from ortools.sat.python import cp_model


def main() -> None:
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    num_items = len(data["weights"])
    all_items = range(num_items)

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    num_bins = len(data["bin_capacities"])
    all_bins = range(num_bins)

    model = cp_model.CpModel()

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in all_items:
        for b in all_bins:
            x[i, b] = model.new_bool_var(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in all_items:
        model.add_at_most_one(x[i, b] for b in all_bins)

    # The amount packed in each bin cannot exceed its capacity.
    for b in all_bins:
        model.add(
            sum(x[i, b] * data["weights"][i] for i in all_items)
            <= data["bin_capacities"][b]
        )

    # Objective.
    # maximize total value of packed items.
    objective = []
    for i in all_items:
        for b in all_bins:
            objective.append(cp_model.LinearExpr.term(x[i, b], data["values"][i]))
    model.maximize(cp_model.LinearExpr.sum(objective))

    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL:
        print(f"Total packed value: {solver.objective_value}")
        total_weight = 0
        for b in all_bins:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in all_items:
                if solver.value(x[i, b]) > 0:
                    print(
                        f'Item:{i} weight:{data["weights"][i]} value:{data["values"][i]}'
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++

// Solves a multiple knapsack problem using the CP-SAT solver.
#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MultipleKnapsackSat() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = static_cast<int>(weights.size());
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = static_cast<int>(bin_capacities.size());
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  CpModelBuilder cp_model;

  // Variables.
  // x[i, b] = 1 if item i is packed in bin b.
  std::map<std::tuple<int, int>, BoolVar> x;
  for (int i : all_items) {
    for (int b : all_bins) {
      auto key = std::make_tuple(i, b);
      x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    std::vector<BoolVar> copies;
    for (int b : all_bins) {
      copies.push_back(x[std::make_tuple(i, b)]);
    }
    cp_model.AddAtMostOne(copies);
  }

  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += x[std::make_tuple(i, b)] * weights[i];
    }
    cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  LinearExpr objective;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective += x[std::make_tuple(i, b)] * values[i];
    }
  }
  cp_model.Maximize(objective);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Total packed value: " << response.objective_value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        auto key = std::make_tuple(i, b);
        if (SolutionIntegerValue(response, x[key]) > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}
}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MultipleKnapsackSat();
  return EXIT_SUCCESS;
}

Java

// Solves a multiple knapsack problem using the CP-SAT solver.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Sample showing how to solve a multiple knapsack problem. */
public class MultipleKnapsackSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final int[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    CpModel model = new CpModel();

    // Variables.
    Literal[][] x = new Literal[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = model.newBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      List<Literal> bins = new ArrayList<>();
      for (int b : allBins) {
        bins.add(x[i][b]);
      }
      model.addAtMostOne(bins);
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      LinearExprBuilder load = LinearExpr.newBuilder();
      for (int i : allItems) {
        load.addTerm(x[i][b], weights[i]);
      }
      model.addLessOrEqual(load, binCapacities[b]);
    }

    // Objective.
    // Maximize total value of packed items.
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int i : allItems) {
      for (int b : allBins) {
        obj.addTerm(x[i][b], values[i]);
      }
    }
    model.maximize(obj);

    CpSolver solver = new CpSolver();
    final CpSolverStatus status = solver.solve(model);

    // Check that the problem has an optimal solution.
    if (status == CpSolverStatus.OPTIMAL) {
      System.out.println("Total packed value: " + solver.objectiveValue());
      long totalWeight = 0;
      for (int b : allBins) {
        long binWeight = 0;
        long binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (solver.booleanValue(x[i][b])) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackSat() {}
}

C#

// Solves a multiple knapsack problem using the CP-SAT solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}