پازل رمزنگاری یک تمرین ریاضی است که در آن ارقام برخی از اعداد با حروف (یا نمادها) نشان داده می شوند. هر حرف نشان دهنده یک رقم منحصر به فرد است. هدف یافتن ارقامی است که معادله ریاضی داده شده تأیید شود:
CP + IS + FUN -------- = TRUE
با انتساب حروف به ارقام معادله زیر به دست می آید:
23 + 74 + 968 -------- = 1065
پاسخ های دیگری برای این مشکل وجود دارد. ما نشان خواهیم داد که چگونه همه راه حل ها را پیدا کنیم.
مدل سازی مشکل
مانند هر مشکل بهینه سازی، ما با شناسایی متغیرها و محدودیت ها شروع می کنیم. متغیرها حروفی هستند که می توانند هر مقدار تک رقمی داشته باشند.
برای CP + IS + FUN = TRUE، محدودیت ها به شرح زیر است:
- معادله:
CP + IS + FUN = TRUE
. - هر یک از ده حرف باید یک رقم متفاوت باشد.
-
C
،I
،F
وT
نمی توانند صفر باشند (زیرا صفرهای ابتدایی را در اعداد نمی نویسیم).
شما می توانید مشکلات رمزنگاری را با حل کننده جدید CP-SAT که کارآمدتر است یا با حل کننده اصلی CP حل کنید. ما نمونه هایی را با استفاده از هر دو حل کننده به شما نشان خواهیم داد که با CP-SAT شروع می شود.
راه حل CP-SAT
ما متغیرها، محدودیت ها، فراخوانی حل کننده و در نهایت برنامه های کامل را نشان خواهیم داد.
کتابخانه ها را وارد کنید
کد زیر کتابخانه مورد نیاز را وارد می کند.
پایتون
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h"
جاوا
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
سی شارپ
using System; using Google.OrTools.Sat;
مدل را اعلام کنید
کد زیر مدل مشکل را اعلام می کند.
پایتون
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
جاوا
CpModel model = new CpModel();
سی شارپ
CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
تعریف متغیرها
هنگام استفاده از حل کننده CP-SAT، روش های کمکی خاصی وجود دارد که تعریف آنها مفید است. ما از یکی از آنها، NewIntVar
، برای اعلام ارقام (عدد صحیح) خود استفاده خواهیم کرد. ما بین حروفی که به طور بالقوه می توانند صفر باشند و حروفی که نمی توانند ( C
، I
، F
و T
) تمایز قائل می شویم.
پایتون
base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E");
جاوا
int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};
سی شارپ
int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };
تعریف محدودیت ها
بعد، محدودیت ها. ابتدا با استفاده از روش کمکی AddAllDifferent
اطمینان حاصل می کنیم که همه حروف دارای مقادیر متفاوتی هستند. سپس از متد کمکی AddEquality
برای ایجاد محدودیت هایی استفاده می کنیم که برابری CP + IS + FUN = TRUE
اعمال می کند.
پایتون
model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e )
C++
// Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);
جاوا
model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0);
سی شارپ
// Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);
چاپگر راه حل
کد چاپگر راه حل، که هر راه حل را همانطور که حل کننده آن را پیدا می کند، نمایش می دهد، در زیر نشان داده شده است.
پایتون
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; }));
جاوا
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
سی شارپ
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
فراخوانی حل کننده
در نهایت مشکل را حل کرده و راه حل را نمایش می دهیم. همه جادوها در متد operations_research::sat::SolveCpModel()
است.
پایتون
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
// Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions;
جاوا
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
سی شارپ
// Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
هنگامی که برنامه را اجرا می کنید، خروجی زیر را نمایش می دهد که در آن هر ردیف یک راه حل است:
C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4 Statistics - status : OPTIMAL - conflicts : 110 - branches : 435 - wall time : 0.014934 ms - solutions found : 72
برنامه های کامل
در اینجا برنامه های کامل وجود دارد.
پایتون
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def main() -> None: """solve the CP+IS+FUN==TRUE cryptarithm.""" # Constraint programming engine model = cp_model.CpModel() base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e ) # Creates a solver and solves the model. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") print(f" sol found: {solution_printer.solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CPIsFunSat() { // Instantiate the solver. CpModelBuilder cp_model; const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E"); // Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::CPIsFunSat(); return EXIT_SUCCESS; }
جاوا
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Cryptarithmetic puzzle. */ public final class CpIsFunSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Define constraints. model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); // Statistics. System.out.println("Statistics"); System.out.println(" - conflicts : " + solver.numConflicts()); System.out.println(" - branches : " + solver.numBranches()); System.out.println(" - wall time : " + solver.wallTime() + " s"); System.out.println(" - solutions : " + cb.getSolutionCount()); } private CpIsFunSat() {} }
سی شارپ
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.Sat; public class CpIsFunSat { public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } // Solve the CP+IS+FUN==TRUE cryptarithm. static void Main() { // Constraint programming engine CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
راه حل اصلی CP
در این مورد، ما پایه را به عنوان یک متغیر در نظر می گیریم، بنابراین می توانید معادله پایه های بالاتر را حل کنید. (هیچ راه حل پایه پایین تر برای CP + IS + FUN = TRUE
نمی تواند وجود داشته باشد زیرا ده حرف باید همه متفاوت باشند.)
کتابخانه ها را وارد کنید
کد زیر کتابخانه مورد نیاز را وارد می کند.
پایتون
from ortools.constraint_solver import pywrapcp
C++
#include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h"
جاوا
سی شارپ
using System; using Google.OrTools.ConstraintSolver;
ایجاد حل کننده
اولین قدم ایجاد Solver
است.
پایتون
solver = pywrapcp.Solver("CP is fun!")
C++
Solver solver("CP is fun!");
جاوا
Solver solver = new Solver("CP is fun!");
سی شارپ
Solver solver = new Solver("CP is fun!");
تعریف متغیرها
اولین قدم ایجاد یک IntVar
برای هر حرف است. ما بین حروفی که به طور بالقوه می توانند صفر باشند و حروفی که نمی توانند ( C
، I
، F
و T
) تمایز قائل می شویم.
بعد، یک آرایه حاوی یک IntVar
جدید برای هر حرف ایجاد می کنیم. این فقط به این دلیل ضروری است که وقتی محدودیتهای خود را تعریف میکنیم، از AllDifferent
استفاده میکنیم، بنابراین به آرایهای نیاز داریم که هر عنصر باید برای آن متفاوت باشد.
در نهایت، ما تأیید می کنیم که پایه ما حداقل به اندازه تعداد حروف است. در غیر این صورت، هیچ راه حلی وجود ندارد
پایتون
base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size());
جاوا
final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); }
سی شارپ
const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); }
تعریف محدودیت ها
اکنون که متغیرهای خود را تعریف کردیم، مرحله بعدی تعریف محدودیت ها است. ابتدا قید AllDifferent
را اضافه می کنیم و هر حرف را مجبور می کنیم رقم متفاوتی داشته باشد.
در مرحله بعد، محدودیت CP + IS + FUN = TRUE
اضافه می کنیم. برنامه های نمونه این کار را به روش های مختلف انجام می دهند.
پایتون
solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t )
C++
// Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum));
جاوا
solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2));
سی شارپ
solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);
فراخوانی حل کننده
اکنون که متغیرها و محدودیت های خود را داریم، آماده حل آن هستیم.
کد چاپگر راه حل، که هر راه حل را همانطور که حل کننده آن را پیدا می کند، نمایش می دهد، در زیر نشان داده شده است.
از آنجایی که بیش از یک راه حل برای مشکل ما وجود دارد، راه حل ها را با حلقه while solver.NextSolution()
تکرار می کنیم. اگر فقط سعی می کردیم یک راه حل واحد پیدا کنیم، از این اصطلاح استفاده می کردیم:\
if (solver.NextSolution()) { // Print solution. } else { // Print that no solution could be found. }
پایتون
solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}")
C++
int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions;
جاوا
int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution);
سی شارپ
int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}");
برنامه های کامل
در اینجا برنامه های کامل وجود دارد.
پایتون
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.constraint_solver import pywrapcp def main(): # Constraint programming engine solver = pywrapcp.Solver("CP is fun!") base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t ) solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { // Helper functions. IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2, const int64_t base) { return s->MakeSum(s->MakeProd(v1, base), v2)->Var(); } IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base); tmp_vars.push_back(v2); coefficients.push_back(base); tmp_vars.push_back(v3); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, IntVar* const v4, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base * base); tmp_vars.push_back(v2); coefficients.push_back(base * base); tmp_vars.push_back(v3); coefficients.push_back(base); tmp_vars.push_back(v4); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } void CPIsFunCp() { // Instantiate the solver. Solver solver("CP is fun!"); const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size()); // Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum)); int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace operations_research int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); absl::SetFlag(&FLAGS_stderrthreshold, 0); operations_research::CPIsFunCp(); return EXIT_SUCCESS; }
جاوا
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; /** Cryptarithmetic puzzle. */ public final class CpIsFunCp { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CP is fun!"); final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); } // Define constraints. solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2)); int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution); } private CpIsFunCp() {} }
سی شارپ
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.ConstraintSolver; public class CpIsFunCp { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CP is fun!"); const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); } // Define constraints. solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t); int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}"); } }