casse-tête cryptarithmétique est un exercice mathématique dans lequel les chiffres d'une les chiffres sont représentés par des lettres (ou des symboles). Chaque lettre représente chiffre. L'objectif est de trouver les chiffres de sorte qu'une équation mathématique donnée soit vérifiés:
CP + IS + FUN -------- = TRUE
L'affectation de lettres à des chiffres donne l'équation suivante:
23 + 74 + 968 -------- = 1065
Il existe d'autres réponses à ce problème. Nous vous montrerons comment trouver toutes les solutions.
Modélisation du problème
Comme pour tout problème d'optimisation, nous allons commencer par identifier les variables de contraintes. Les variables sont les lettres, qui peuvent accepter n'importe quel chiffre .
Pour CP + IS + FUN = TRUE, les contraintes sont les suivantes:
- L'équation:
CP + IS + FUN = TRUE
. - Chacune des dix lettres doit correspondre à un chiffre différent.
C
,I
,F
etT
ne peuvent pas être nuls (car nous n'écrivons pas de zéros au début dans chiffres).
Vous pouvez résoudre des problèmes de cryptarithmétique avec le nouveau résolveur CP-SAT, qui le plus efficace, ou le solutionneur de CP d'origine. Nous allons vous montrer des exemples utilisant les deux solutions, à commencer par CP-SAT.
Solution CP-SAT
Nous allons voir les variables, les contraintes, l'appel de la solution et enfin, les programmes complets.
Importer les bibliothèques
Le code suivant importe la bibliothèque requise.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
C#
using System; using Google.OrTools.Sat;
Déclarer le modèle
Le code suivant déclare le modèle pour le problème.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
Définir les variables
Lorsque vous utilisez la solution CP-SAT, certaines méthodes d'assistance sont utiles pour
définir.
Nous utiliserons l'un d'entre eux, NewIntVar
, pour déclarer nos chiffres (entiers).
Nous faisons la distinction entre les lettres qui peuvent potentiellement être des zéros et celles qui
ne peut pas (C
, I
, F
et T
).
Python
base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E");
Java
int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};
C#
int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };
Définir les contraintes
Vient ensuite les contraintes. Tout d'abord, nous nous assurons que toutes
les lettres ont des valeurs différentes,
à l'aide de la méthode d'assistance AddAllDifferent
. Ensuite, nous utilisons l'outil d'aide AddEquality
.
pour créer des contraintes qui appliquent l'égalité CP + IS + FUN = TRUE
.
Python
model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e )
C++
// Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);
Java
model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0);
C#
// Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);
Imprimante à solutions
Le code de l'imprimante de solution, qui affiche chaque solution en tant que solutionneur le trouve, comme illustré ci-dessous.
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
C#
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
Appeler le résolveur
Enfin, nous résolvons le problème et affichons la solution. Toute la magie réside dans
operations_research::sat::SolveCpModel()
.
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
// Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
C#
// Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
Lorsque vous exécutez le programme, il affiche la sortie suivante, dans laquelle chaque ligne est une solution:
C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4 Statistics - status : OPTIMAL - conflicts : 110 - branches : 435 - wall time : 0.014934 ms - solutions found : 72
Terminer les programmes
Voici les programmes complets.
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def main() -> None: """solve the CP+IS+FUN==TRUE cryptarithm.""" # Constraint programming engine model = cp_model.CpModel() base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e ) # Creates a solver and solves the model. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") print(f" sol found: {solution_printer.solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CPIsFunSat() { // Instantiate the solver. CpModelBuilder cp_model; const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E"); // Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::CPIsFunSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Cryptarithmetic puzzle. */ public final class CpIsFunSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Define constraints. model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); // Statistics. System.out.println("Statistics"); System.out.println(" - conflicts : " + solver.numConflicts()); System.out.println(" - branches : " + solver.numBranches()); System.out.println(" - wall time : " + solver.wallTime() + " s"); System.out.println(" - solutions : " + cb.getSolutionCount()); } private CpIsFunSat() {} }
C#
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.Sat; public class CpIsFunSat { public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } // Solve the CP+IS+FUN==TRUE cryptarithm. static void Main() { // Constraint programming engine CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
Solution CP d'origine
Dans ce cas, nous allons traiter la base comme une variable, afin que vous puissiez résoudre l'équation
pour des bases plus élevées. (Il n'existe pas de solution de base inférieure
CP + IS + FUN = TRUE
, car les 10 lettres doivent toutes être différentes.)
Importer les bibliothèques
Le code suivant importe la bibliothèque requise.
Python
from ortools.constraint_solver import pywrapcp
C++
#include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h"
Java
C#
using System; using Google.OrTools.ConstraintSolver;
Créer la solution
La première étape consiste à créer le Solver
.
Python
solver = pywrapcp.Solver("CP is fun!")
C++
Solver solver("CP is fun!");
Java
Solver solver = new Solver("CP is fun!");
C#
Solver solver = new Solver("CP is fun!");
Définir les variables
La première étape consiste à créer un IntVar
pour chaque lettre. Nous faisons
la distinction entre
les lettres qui peuvent potentiellement être des zéros et celles qui ne peuvent pas l'être (C
, I
, F
,
et T
).
Ensuite, nous créons un tableau contenant un nouveau IntVar
pour chaque lettre. Il s'agit seulement
est nécessaire, car lorsque nous définissons nos contraintes, nous utilisons
AllDifferent
. Nous avons donc besoin d'un tableau pour lequel chaque élément doit être différent.
Enfin, nous vérifions que notre base est au moins égale au nombre de lettres ; sinon il n'y a pas de solution.
Python
base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size());
Java
final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); }
C#
const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); }
Définir les contraintes
Maintenant que nous avons défini nos variables, l'étape suivante consiste à définir des contraintes.
Tout d'abord, nous ajoutons la contrainte AllDifferent
, en obligeant chaque lettre à avoir une
un autre chiffre.
Ajoutons ensuite la contrainte CP + IS + FUN = TRUE
. C'est ce que font les exemples de programmes
de différentes manières.
Python
solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t )
C++
// Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum));
Java
solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2));
C#
solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);
Appeler le résolveur
Maintenant que nous avons nos variables et nos contraintes, nous pouvons les résoudre.
Le code de l'imprimante de solution, qui affiche chaque solution en tant que solutionneur le trouve, comme illustré ci-dessous.
Comme il existe plusieurs solutions à notre problème, nous procédons par itération
avec une boucle while solver.NextSolution()
. Si nous essayions juste
trouver une seule solution, nous
utiliserions cet idiome:\
if (solver.NextSolution()) { // Print solution. } else { // Print that no solution could be found. }
Python
solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}")
C++
int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution);
C#
int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}");
Terminer les programmes
Voici les programmes complets.
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.constraint_solver import pywrapcp def main(): # Constraint programming engine solver = pywrapcp.Solver("CP is fun!") base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t ) solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { // Helper functions. IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2, const int64_t base) { return s->MakeSum(s->MakeProd(v1, base), v2)->Var(); } IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base); tmp_vars.push_back(v2); coefficients.push_back(base); tmp_vars.push_back(v3); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, IntVar* const v4, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base * base); tmp_vars.push_back(v2); coefficients.push_back(base * base); tmp_vars.push_back(v3); coefficients.push_back(base); tmp_vars.push_back(v4); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } void CPIsFunCp() { // Instantiate the solver. Solver solver("CP is fun!"); const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size()); // Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum)); int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace operations_research int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); absl::SetFlag(&FLAGS_stderrthreshold, 0); operations_research::CPIsFunCp(); return EXIT_SUCCESS; }
Java
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; /** Cryptarithmetic puzzle. */ public final class CpIsFunCp { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CP is fun!"); final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); } // Define constraints. solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2)); int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution); } private CpIsFunCp() {} }
C#
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.ConstraintSolver; public class CpIsFunCp { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CP is fun!"); const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); } // Define constraints. solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t); int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}"); } }