暗号パズル

暗号パズルは数学の演習で、いくつかの 数字は文字(または記号)で表します。各文字は、一意の ID を表す あります。目標は、数式が成り立ち、 確認済み:

      CP
+     IS
+    FUN
--------
=   TRUE

文字を数字に 1 回代入すると、次の式が得られます。

      23
+     74
+    968
--------
=   1065

この問題には他の答えがあります。すべての解決策を見つける方法を紹介します。

問題のモデル化

他の最適化問題と同様に、まず変数を特定し、 必要があります。変数は文字で、1 桁の数字であればどれでもかまいません。 あります。

CP + IS + FUN = TRUE の場合、制約は次のようになります。

  • 計算式: CP + IS + FUN = TRUE
  • 10 文字はそれぞれ別の数字である必要があります。
  • CIFT をゼロにすることはできません(先頭にゼロは書き込まれないため、 あります。

新しい CP-SAT ソルバーは、 元の CP ソルバーよりも効率的です。 両方のソルバーを使用した例を紹介します。最初は CP-SAT です。

CP-SAT ソリューション

変数、制約、ソルバーの呼び出し、最後に 学習します。

ライブラリのインポート

次のコードは、必要なライブラリをインポートします。

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using Google.OrTools.Sat;

モデルを宣言する

次のコードは、問題のモデルを宣言しています。

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

変数の定義

CP-SAT ソルバーを使用する際に役立ついくつかのヘルパー メソッドがあります。 定義します。 そのうちの 1 つ、NewIntVar を使用して、(整数)数字を宣言します。 ゼロになる可能性がある文字と、ゼロになる可能性がある文字を区別します。 できません(CIFT)。

Python

base = 10

c = model.new_int_var(1, base - 1, "C")
p = model.new_int_var(0, base - 1, "P")
i = model.new_int_var(1, base - 1, "I")
s = model.new_int_var(0, base - 1, "S")
f = model.new_int_var(1, base - 1, "F")
u = model.new_int_var(0, base - 1, "U")
n = model.new_int_var(0, base - 1, "N")
t = model.new_int_var(1, base - 1, "T")
r = model.new_int_var(0, base - 1, "R")
e = model.new_int_var(0, base - 1, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
Domain digit(0, kBase - 1);
Domain non_zero_digit(1, kBase - 1);

IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
IntVar p = cp_model.NewIntVar(digit).WithName("P");
IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
IntVar s = cp_model.NewIntVar(digit).WithName("S");
IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
IntVar u = cp_model.NewIntVar(digit).WithName("U");
IntVar n = cp_model.NewIntVar(digit).WithName("N");
IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
IntVar r = cp_model.NewIntVar(digit).WithName("R");
IntVar e = cp_model.NewIntVar(digit).WithName("E");

Java

int base = 10;
IntVar c = model.newIntVar(1, base - 1, "C");
IntVar p = model.newIntVar(0, base - 1, "P");
IntVar i = model.newIntVar(1, base - 1, "I");
IntVar s = model.newIntVar(0, base - 1, "S");
IntVar f = model.newIntVar(1, base - 1, "F");
IntVar u = model.newIntVar(0, base - 1, "U");
IntVar n = model.newIntVar(0, base - 1, "N");
IntVar t = model.newIntVar(1, base - 1, "T");
IntVar r = model.newIntVar(0, base - 1, "R");
IntVar e = model.newIntVar(0, base - 1, "E");

// We need to group variables in a list to use the constraint AllDifferent.
IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

C#

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

制約の定義

次は制約ですまず、すべての文字がそれぞれ異なる値であることを確認します。 AddAllDifferent ヘルパー メソッドを使用します。次に、AddEquality ヘルパーを使用します。 メソッドを使用して、CP + IS + FUN = TRUE の等式を適用する制約を作成します。

Python

model.add_all_different(letters)

# CP + IS + FUN = TRUE
model.add(
    c * base + p + i * base + s + f * base * base + u * base + n
    == t * base * base * base + r * base * base + u * base + e
)

C++

// Define constraints.
cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

// CP + IS + FUN = TRUE
cp_model.AddEquality(
    c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
    kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

Java

model.addAllDifferent(letters);

// CP + IS + FUN = TRUE
model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                      new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                          -base * base, -base, -1}),
    0);

C#

// Define constraints.
model.AddAllDifferent(letters);

// CP + IS + FUN = TRUE
model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
          t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

ソリューション プリンタ

解法として各解答を表示する解答プリンタのコード 表示されます。

Python

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count 

C++

Model model;
int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
  LOG(INFO) << "Solution " << num_solutions;
  LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
            << "P=" << SolutionIntegerValue(response, p) << " "
            << "I=" << SolutionIntegerValue(response, i) << " "
            << "S=" << SolutionIntegerValue(response, s) << " "
            << "F=" << SolutionIntegerValue(response, f) << " "
            << "U=" << SolutionIntegerValue(response, u) << " "
            << "N=" << SolutionIntegerValue(response, n) << " "
            << "T=" << SolutionIntegerValue(response, t) << " "
            << "R=" << SolutionIntegerValue(response, r) << " "
            << "E=" << SolutionIntegerValue(response, e);
  num_solutions++;
}));

Java

static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
  public VarArraySolutionPrinter(IntVar[] variables) {
    variableArray = variables;
  }

  @Override
  public void onSolutionCallback() {
    for (IntVar v : variableArray) {
      System.out.printf("  %s = %d", v.getName(), value(v));
    }
    System.out.println();
    solutionCount++;
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final IntVar[] variableArray;
}

C#

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            foreach (IntVar v in variables_)
            {
                Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
            }
            Console.WriteLine();
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

ソルバーの呼び出し

最後に問題を解いて解答を表示します。すべての魔法は operations_research::sat::SolveCpModel() メソッドを呼び出します。

Python

solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter(letters)
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)

C++

// Tell the solver to enumerate all solutions.
SatParameters parameters;
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));

const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// And solve.
solver.solve(model, cb);

C#

// Creates a solver and solves the model.
CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Search for all solutions.
solver.StringParameters = "enumerate_all_solutions:true";
// And solve.
solver.Solve(model, cb);

プログラムを実行すると、次の出力が表示されます。各行が解答を示しています。

C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4

Statistics
  - status          : OPTIMAL
  - conflicts       : 110
  - branches        : 435
  - wall time       : 0.014934 ms
  - solutions found : 72

プログラムを完了する

全プログラムは次のとおりです。

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.sat.python import cp_model


class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count


def main() -> None:
    """solve the CP+IS+FUN==TRUE cryptarithm."""
    # Constraint programming engine
    model = cp_model.CpModel()

    base = 10

    c = model.new_int_var(1, base - 1, "C")
    p = model.new_int_var(0, base - 1, "P")
    i = model.new_int_var(1, base - 1, "I")
    s = model.new_int_var(0, base - 1, "S")
    f = model.new_int_var(1, base - 1, "F")
    u = model.new_int_var(0, base - 1, "U")
    n = model.new_int_var(0, base - 1, "N")
    t = model.new_int_var(1, base - 1, "T")
    r = model.new_int_var(0, base - 1, "R")
    e = model.new_int_var(0, base - 1, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    model.add_all_different(letters)

    # CP + IS + FUN = TRUE
    model.add(
        c * base + p + i * base + s + f * base * base + u * base + n
        == t * base * base * base + r * base * base + u * base + e
    )

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    solution_printer = VarArraySolutionPrinter(letters)
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True
    # Solve.
    status = solver.solve(model, solution_printer)

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")
    print(f"  sol found: {solution_printer.solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CPIsFunSat() {
  // Instantiate the solver.
  CpModelBuilder cp_model;

  const int64_t kBase = 10;

  // Define decision variables.
  Domain digit(0, kBase - 1);
  Domain non_zero_digit(1, kBase - 1);

  IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
  IntVar p = cp_model.NewIntVar(digit).WithName("P");
  IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
  IntVar s = cp_model.NewIntVar(digit).WithName("S");
  IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
  IntVar u = cp_model.NewIntVar(digit).WithName("U");
  IntVar n = cp_model.NewIntVar(digit).WithName("N");
  IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
  IntVar r = cp_model.NewIntVar(digit).WithName("R");
  IntVar e = cp_model.NewIntVar(digit).WithName("E");

  // Define constraints.
  cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

  // CP + IS + FUN = TRUE
  cp_model.AddEquality(
      c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
      kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

  Model model;
  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
    LOG(INFO) << "Solution " << num_solutions;
    LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
              << "P=" << SolutionIntegerValue(response, p) << " "
              << "I=" << SolutionIntegerValue(response, i) << " "
              << "S=" << SolutionIntegerValue(response, s) << " "
              << "F=" << SolutionIntegerValue(response, f) << " "
              << "U=" << SolutionIntegerValue(response, u) << " "
              << "N=" << SolutionIntegerValue(response, n) << " "
              << "T=" << SolutionIntegerValue(response, t) << " "
              << "R=" << SolutionIntegerValue(response, r) << " "
              << "E=" << SolutionIntegerValue(response, e);
    num_solutions++;
  }));

  // Tell the solver to enumerate all solutions.
  SatParameters parameters;
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));

  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
  LOG(INFO) << "Number of solutions found: " << num_solutions;

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::CPIsFunSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Cryptarithmetic puzzle. */
public final class CpIsFunSat {
  static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
    public VarArraySolutionPrinter(IntVar[] variables) {
      variableArray = variables;
    }

    @Override
    public void onSolutionCallback() {
      for (IntVar v : variableArray) {
        System.out.printf("  %s = %d", v.getName(), value(v));
      }
      System.out.println();
      solutionCount++;
    }

    public int getSolutionCount() {
      return solutionCount;
    }

    private int solutionCount;
    private final IntVar[] variableArray;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    int base = 10;
    IntVar c = model.newIntVar(1, base - 1, "C");
    IntVar p = model.newIntVar(0, base - 1, "P");
    IntVar i = model.newIntVar(1, base - 1, "I");
    IntVar s = model.newIntVar(0, base - 1, "S");
    IntVar f = model.newIntVar(1, base - 1, "F");
    IntVar u = model.newIntVar(0, base - 1, "U");
    IntVar n = model.newIntVar(0, base - 1, "N");
    IntVar t = model.newIntVar(1, base - 1, "T");
    IntVar r = model.newIntVar(0, base - 1, "R");
    IntVar e = model.newIntVar(0, base - 1, "E");

    // We need to group variables in a list to use the constraint AllDifferent.
    IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Define constraints.
    model.addAllDifferent(letters);

    // CP + IS + FUN = TRUE
    model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                          new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                              -base * base, -base, -1}),
        0);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);
    // And solve.
    solver.solve(model, cb);

    // Statistics.
    System.out.println("Statistics");
    System.out.println("  - conflicts : " + solver.numConflicts());
    System.out.println("  - branches  : " + solver.numBranches());
    System.out.println("  - wall time : " + solver.wallTime() + " s");
    System.out.println("  - solutions : " + cb.getSolutionCount());
  }

  private CpIsFunSat() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.Sat;

public class CpIsFunSat
{
    public class VarArraySolutionPrinter : CpSolverSolutionCallback
    {
        public VarArraySolutionPrinter(IntVar[] variables)
        {
            variables_ = variables;
        }

        public override void OnSolutionCallback()
        {
            {
                foreach (IntVar v in variables_)
                {
                    Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
                }
                Console.WriteLine();
                solution_count_++;
            }
        }

        public int SolutionCount()
        {
            return solution_count_;
        }

        private int solution_count_;
        private IntVar[] variables_;
    }

    // Solve the CP+IS+FUN==TRUE cryptarithm.
    static void Main()
    {
        // Constraint programming engine
        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

元の CP ソリューション

この場合、底を変数として扱うため、方程式を解くことができます 必要があります(基盤となるソリューションは CP + IS + FUN = TRUE。10 文字がすべて異なる必要があるためです)。

ライブラリのインポート

次のコードは、必要なライブラリをインポートします。

Python

from ortools.constraint_solver import pywrapcp

C++

#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

Java

C#

using System;
using Google.OrTools.ConstraintSolver;

ソルバーを作成する

まず、Solver を作成します。

Python

solver = pywrapcp.Solver("CP is fun!")

C++

Solver solver("CP is fun!");

Java

Solver solver = new Solver("CP is fun!");

C#

Solver solver = new Solver("CP is fun!");

変数の定義

まず、文字ごとに IntVar を作成します。Google では、 ゼロになり得る文字とそうでない文字(CIF、 および T など)。

次に、各文字に対応する新しい IntVar を含む配列を作成します。これは、 制約を定義するときは AllDifferent であるため、すべての要素が異なる配列が必要です。

最後に、底が少なくとも文字の数と同じ大きさであることを確認します。 そうでなければ解決策はありません

Python

base = 10

# Decision variables.
digits = list(range(0, base))
digits_without_zero = list(range(1, base))
c = solver.IntVar(digits_without_zero, "C")
p = solver.IntVar(digits, "P")
i = solver.IntVar(digits_without_zero, "I")
s = solver.IntVar(digits, "S")
f = solver.IntVar(digits_without_zero, "F")
u = solver.IntVar(digits, "U")
n = solver.IntVar(digits, "N")
t = solver.IntVar(digits_without_zero, "T")
r = solver.IntVar(digits, "R")
e = solver.IntVar(digits, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

// We need to group variables in a vector to be able to use
// the global constraint AllDifferent
std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

// Check if we have enough digits
CHECK_GE(kBase, letters.size());

Java

final int base = 10;

// Decision variables.
final IntVar c = solver.makeIntVar(1, base - 1, "C");
final IntVar p = solver.makeIntVar(0, base - 1, "P");
final IntVar i = solver.makeIntVar(1, base - 1, "I");
final IntVar s = solver.makeIntVar(0, base - 1, "S");
final IntVar f = solver.makeIntVar(1, base - 1, "F");
final IntVar u = solver.makeIntVar(0, base - 1, "U");
final IntVar n = solver.makeIntVar(0, base - 1, "N");
final IntVar t = solver.makeIntVar(1, base - 1, "T");
final IntVar r = solver.makeIntVar(0, base - 1, "R");
final IntVar e = solver.makeIntVar(0, base - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

// Verify that we have enough digits.
if (base < letters.length) {
  throw new Exception("base < letters.Length");
}

C#

const int kBase = 10;

// Decision variables.
IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

// Verify that we have enough digits.
if (kBase < letters.Length)
{
    throw new Exception("kBase < letters.Length");
}

制約の定義

変数を定義したところで、次のステップは制約の定義です。 まず、AllDifferent 制約を追加し、各文字に 数字が異なるためです。

次に、CP + IS + FUN = TRUE 制約を追加します。サンプル プログラムでは、この処理を行います。 いくつかあります。

Python

solver.Add(solver.AllDifferent(letters))

# CP + IS + FUN = TRUE
solver.Add(
    p + s + n + base * (c + i + u) + base * base * f
    == e + base * u + base * base * r + base * base * base * t
)

C++

// Define constraints.
solver.AddConstraint(solver.MakeAllDifferent(letters));

// CP + IS + FUN = TRUE
IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
IntVar* const sum_terms =
    solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

Java

solver.addConstraint(solver.makeAllDifferent(letters));

// CP + IS + FUN = TRUE
final IntVar sum1 =
    solver
        .makeSum(new IntVar[] {p, s, n,
            solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
            solver.makeProd(f, base * base).var()})
        .var();
final IntVar sum2 = solver
                        .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                            solver.makeProd(r, base * base).var(),
                            solver.makeProd(t, base * base * base).var()})
                        .var();
solver.addConstraint(solver.makeEquality(sum1, sum2));

C#

solver.Add(letters.AllDifferent());

// CP + IS + FUN = TRUE
solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
           e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

ソルバーの呼び出し

変数と制約が用意できたので、いよいよ解決できます。

解法として各解答を表示する解答プリンタのコード 表示されます。

この問題には複数の解決策があるため、すべての解決策を while solver.NextSolution() ループを使用して解答を導き出すことができます。単に 次のようなイディオムを使用します。

if (solver.NextSolution()) {
    // Print solution.
} else {
    // Print that no solution could be found.
}

Python

solution_count = 0
db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
solver.NewSearch(db)
while solver.NextSolution():
    print(letters)
    # Is CP + IS + FUN = TRUE?
    assert (
        base * c.Value()
        + p.Value()
        + base * i.Value()
        + s.Value()
        + base * base * f.Value()
        + base * u.Value()
        + n.Value()
        == base * base * base * t.Value()
        + base * base * r.Value()
        + base * u.Value()
        + e.Value()
    )
    solution_count += 1
solver.EndSearch()
print(f"Number of solutions found: {solution_count}")

C++

int num_solutions = 0;
// Create decision builder to search for solutions.
DecisionBuilder* const db = solver.MakePhase(
    letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution()) {
  LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
            << "I=" << i->Value() << " " << "S=" << s->Value() << " "
            << "F=" << f->Value() << " " << "U=" << u->Value() << " "
            << "N=" << n->Value() << " " << "T=" << t->Value() << " "
            << "R=" << r->Value() << " " << "E=" << e->Value();

  // Is CP + IS + FUN = TRUE?
  CHECK_EQ(p->Value() + s->Value() + n->Value() +
               kBase * (c->Value() + i->Value() + u->Value()) +
               kBase * kBase * f->Value(),
           e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
               kBase * kBase * kBase * t->Value());
  num_solutions++;
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

int countSolution = 0;
// Create the decision builder to search for solutions.
final DecisionBuilder db =
    solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.newSearch(db);
while (solver.nextSolution()) {
  System.out.println("C=" + c.value() + " P=" + p.value());
  System.out.println(" I=" + i.value() + " S=" + s.value());
  System.out.println(" F=" + f.value() + " U=" + u.value());
  System.out.println(" N=" + n.value() + " T=" + t.value());
  System.out.println(" R=" + r.value() + " E=" + e.value());

  // Is CP + IS + FUN = TRUE?
  if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
          + base * base * f.value()
      != e.value() + base * u.value() + base * base * r.value()
          + base * base * base * t.value()) {
    throw new Exception("CP + IS + FUN != TRUE");
  }
  countSolution++;
}
solver.endSearch();
System.out.println("Number of solutions found: " + countSolution);

C#

int SolutionCount = 0;
// Create the decision builder to search for solutions.
DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
    Console.Write("C=" + c.Value() + " P=" + p.Value());
    Console.Write(" I=" + i.Value() + " S=" + s.Value());
    Console.Write(" F=" + f.Value() + " U=" + u.Value());
    Console.Write(" N=" + n.Value() + " T=" + t.Value());
    Console.Write(" R=" + r.Value() + " E=" + e.Value());
    Console.WriteLine();

    // Is CP + IS + FUN = TRUE?
    if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
            kBase * kBase * f.Value() !=
        e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
    {
        throw new Exception("CP + IS + FUN != TRUE");
    }
    SolutionCount++;
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {SolutionCount}");

プログラムを完了する

全プログラムは次のとおりです。

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.constraint_solver import pywrapcp


def main():
    # Constraint programming engine
    solver = pywrapcp.Solver("CP is fun!")

    base = 10

    # Decision variables.
    digits = list(range(0, base))
    digits_without_zero = list(range(1, base))
    c = solver.IntVar(digits_without_zero, "C")
    p = solver.IntVar(digits, "P")
    i = solver.IntVar(digits_without_zero, "I")
    s = solver.IntVar(digits, "S")
    f = solver.IntVar(digits_without_zero, "F")
    u = solver.IntVar(digits, "U")
    n = solver.IntVar(digits, "N")
    t = solver.IntVar(digits_without_zero, "T")
    r = solver.IntVar(digits, "R")
    e = solver.IntVar(digits, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    solver.Add(solver.AllDifferent(letters))

    # CP + IS + FUN = TRUE
    solver.Add(
        p + s + n + base * (c + i + u) + base * base * f
        == e + base * u + base * base * r + base * base * base * t
    )

    solution_count = 0
    db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
    solver.NewSearch(db)
    while solver.NextSolution():
        print(letters)
        # Is CP + IS + FUN = TRUE?
        assert (
            base * c.Value()
            + p.Value()
            + base * i.Value()
            + s.Value()
            + base * base * f.Value()
            + base * u.Value()
            + n.Value()
            == base * base * base * t.Value()
            + base * base * r.Value()
            + base * u.Value()
            + e.Value()
        )
        solution_count += 1
    solver.EndSearch()
    print(f"Number of solutions found: {solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

namespace operations_research {

// Helper functions.
IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2,
                      const int64_t base) {
  return s->MakeSum(s->MakeProd(v1, base), v2)->Var();
}

IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base);
  tmp_vars.push_back(v3);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, IntVar* const v4, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v3);
  coefficients.push_back(base);
  tmp_vars.push_back(v4);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

void CPIsFunCp() {
  // Instantiate the solver.
  Solver solver("CP is fun!");

  const int64_t kBase = 10;

  // Define decision variables.
  IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
  IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
  IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
  IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
  IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
  IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
  IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
  IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
  IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
  IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

  // We need to group variables in a vector to be able to use
  // the global constraint AllDifferent
  std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

  // Check if we have enough digits
  CHECK_GE(kBase, letters.size());

  // Define constraints.
  solver.AddConstraint(solver.MakeAllDifferent(letters));

  // CP + IS + FUN = TRUE
  IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
  IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
  IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
  IntVar* const sum_terms =
      solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

  IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

  solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

  int num_solutions = 0;
  // Create decision builder to search for solutions.
  DecisionBuilder* const db = solver.MakePhase(
      letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
  solver.NewSearch(db);
  while (solver.NextSolution()) {
    LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
              << "I=" << i->Value() << " " << "S=" << s->Value() << " "
              << "F=" << f->Value() << " " << "U=" << u->Value() << " "
              << "N=" << n->Value() << " " << "T=" << t->Value() << " "
              << "R=" << r->Value() << " " << "E=" << e->Value();

    // Is CP + IS + FUN = TRUE?
    CHECK_EQ(p->Value() + s->Value() + n->Value() +
                 kBase * (c->Value() + i->Value() + u->Value()) +
                 kBase * kBase * f->Value(),
             e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
                 kBase * kBase * kBase * t->Value());
    num_solutions++;
  }
  solver.EndSearch();
  LOG(INFO) << "Number of solutions found: " << num_solutions;
}

}  // namespace operations_research

int main(int argc, char** argv) {
  InitGoogle(argv[0], &argc, &argv, true);
  absl::SetFlag(&FLAGS_stderrthreshold, 0);
  operations_research::CPIsFunCp();
  return EXIT_SUCCESS;
}

Java

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;

/** Cryptarithmetic puzzle. */
public final class CpIsFunCp {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the solver.
    Solver solver = new Solver("CP is fun!");

    final int base = 10;

    // Decision variables.
    final IntVar c = solver.makeIntVar(1, base - 1, "C");
    final IntVar p = solver.makeIntVar(0, base - 1, "P");
    final IntVar i = solver.makeIntVar(1, base - 1, "I");
    final IntVar s = solver.makeIntVar(0, base - 1, "S");
    final IntVar f = solver.makeIntVar(1, base - 1, "F");
    final IntVar u = solver.makeIntVar(0, base - 1, "U");
    final IntVar n = solver.makeIntVar(0, base - 1, "N");
    final IntVar t = solver.makeIntVar(1, base - 1, "T");
    final IntVar r = solver.makeIntVar(0, base - 1, "R");
    final IntVar e = solver.makeIntVar(0, base - 1, "E");

    // Group variables in a vector so that we can use AllDifferent.
    final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Verify that we have enough digits.
    if (base < letters.length) {
      throw new Exception("base < letters.Length");
    }

    // Define constraints.
    solver.addConstraint(solver.makeAllDifferent(letters));

    // CP + IS + FUN = TRUE
    final IntVar sum1 =
        solver
            .makeSum(new IntVar[] {p, s, n,
                solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
                solver.makeProd(f, base * base).var()})
            .var();
    final IntVar sum2 = solver
                            .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                                solver.makeProd(r, base * base).var(),
                                solver.makeProd(t, base * base * base).var()})
                            .var();
    solver.addConstraint(solver.makeEquality(sum1, sum2));

    int countSolution = 0;
    // Create the decision builder to search for solutions.
    final DecisionBuilder db =
        solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
    solver.newSearch(db);
    while (solver.nextSolution()) {
      System.out.println("C=" + c.value() + " P=" + p.value());
      System.out.println(" I=" + i.value() + " S=" + s.value());
      System.out.println(" F=" + f.value() + " U=" + u.value());
      System.out.println(" N=" + n.value() + " T=" + t.value());
      System.out.println(" R=" + r.value() + " E=" + e.value());

      // Is CP + IS + FUN = TRUE?
      if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
              + base * base * f.value()
          != e.value() + base * u.value() + base * base * r.value()
              + base * base * base * t.value()) {
        throw new Exception("CP + IS + FUN != TRUE");
      }
      countSolution++;
    }
    solver.endSearch();
    System.out.println("Number of solutions found: " + countSolution);
  }

  private CpIsFunCp() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.ConstraintSolver;

public class CpIsFunCp
{
    public static void Main(String[] args)
    {
        // Instantiate the solver.
        Solver solver = new Solver("CP is fun!");

        const int kBase = 10;

        // Decision variables.
        IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
        IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
        IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
        IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
        IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
        IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
        IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
        IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
        IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
        IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

        // Group variables in a vector so that we can use AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Verify that we have enough digits.
        if (kBase < letters.Length)
        {
            throw new Exception("kBase < letters.Length");
        }

        // Define constraints.
        solver.Add(letters.AllDifferent());

        // CP + IS + FUN = TRUE
        solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
                   e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

        int SolutionCount = 0;
        // Create the decision builder to search for solutions.
        DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
        solver.NewSearch(db);
        while (solver.NextSolution())
        {
            Console.Write("C=" + c.Value() + " P=" + p.Value());
            Console.Write(" I=" + i.Value() + " S=" + s.Value());
            Console.Write(" F=" + f.Value() + " U=" + u.Value());
            Console.Write(" N=" + n.Value() + " T=" + t.Value());
            Console.Write(" R=" + r.Value() + " E=" + e.Value());
            Console.WriteLine();

            // Is CP + IS + FUN = TRUE?
            if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
                    kBase * kBase * f.Value() !=
                e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
            {
                throw new Exception("CP + IS + FUN != TRUE");
            }
            SolutionCount++;
        }
        solver.EndSearch();
        Console.WriteLine($"Number of solutions found: {SolutionCount}");
    }
}