CVRP (정전용량 차량 경로 문제)는 다양한 위치에서 물건을 수령하거나 배달해야 하는 경우가 많기 때문입니다. 항목에는 중량 또는 부피와 같은 수량이 있고, 차량에는 최대 용량입니다. 문제는 포장 또는 배송하기 차량의 적재량을 초과하지 않으면서도 최소 비용으로 물품을 회수합니다.
다음 예에서는 모든 항목이 선택되었다고 가정합니다. 이 문제를 해결하는 프로그램은 모든 상품이 배송되는 경우에도 작동합니다. 이 경우 CPU 사용률이 낮거나 0이 될 때 차량이 창고를 완전히 놔두고 있습니다. 하지만 용량 제약 조건은 두 경우 모두 동일한 방식으로 구현됩니다.
CVRP 예
다음으로 용량 제약이 있는 VRP의 예를 설명합니다. 예시 이전의 VRP 예를 확장하고 다음 요구사항을 충족해야 합니다 각 위치에는 수요에 해당하는 수요가 있습니다. 픽업할 상품의 수량입니다. 또한 각 차량에는 15개 계단에 있습니다 수요나 수용량의 단위는 지정하지 않습니다.
아래의 그리드는 파란색으로, 방문할 위치는 검은색. 요구사항은 각 위치의 오른쪽 하단에 표시됩니다. 자세한 내용은 VRP의 위치 좌표 섹션을 참조하세요.
문제는 최단 거리 차량에 대한 경로 할당을 찾는 것입니다. 차량이 운반하지 않는 총량은 용량이 초과되었습니다.
OR 도구로 CVRP 예시 해결
다음 섹션에서는 OR 도구를 사용하여 CVRP 예를 해결하는 방법을 설명합니다.
데이터 만들기
이 예의 데이터에는 이전 VRP 예를 빌드하고 다음을 추가합니다. 수요 및 차량 용량:
Python
data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15]
C++
const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
자바
public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15};
C#
public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 };
데이터의 새로운 항목은 다음과 같습니다.
- 수요: 각 위치에는 수량에 해당하는 수요가 있습니다. 예를 들어 픽업할 상품의 무게 또는 부피가 있습니다.
- 용량: 각 차량에는 차량에 탑승하는 차량의 최대 수량인 용량이 수 있습니다. 차량이 경로를 따라 이동할 때 차량의 총 수량은 운반하는 품목은 용량을 초과할 수 없습니다.
거리 콜백 추가
거리 콜백 - 특정 시점 사이의 거리를 반환하는 함수 두 개의 위치는 앞서 살펴본 것과 동일한 방식으로 정의됩니다. VRP 예.
수요 콜백 및 용량 제약조건 추가
거리 콜백 외에, 솔버에는 수요 콜백도 필요합니다. : 각 위치의 수요와 용량의 측정기준을 반환합니다. 제약이 있습니다 다음 코드는 이를 생성합니다.
Python
def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", )
C++
const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
자바
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
C#
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
위치 쌍을 입력으로 사용하는 거리 콜백과 달리
수요 콜백은 배송 위치 (from_node
)에만 종속됩니다.
용량 제약은 차량이 짐의 무게와 관련이 있기 때문에 운반(경로에서 누적되는 수량)을 용량의 측정기준을 만들 수도 있습니다. 거리 측정기준으로 VRP 예.
이 경우
AddDimensionWithVehicleCapacity
메서드를 사용합니다.
이 예시의 모든 차량 용량이 동일하므로
AddDimension
메서드를 사용하여 모든 차량 수량에 대한 단일 상한값을 취합니다. 하지만
AddDimensionWithVehicleCapacity
는 더 일반적인 사례를 처리합니다.
차량마다 용량이 다릅니다
여러 화물 유형 및 용량 관련 문제
더 복잡한 CVRP에서는 각 차량에 여러 유형의 화물을 운반할 수 있습니다. 을 지원하며, 각 유형에 최대 용량이 포함됩니다. 예를 들어, 연료 공급 트럭은 용량이 다른 여러 개의 탱크가 있습니다. 이러한 문제를 처리하려면 각 화물 유형( 고유한 이름을 지정해야 합니다.
솔루션 프린터 추가
솔루션 프린터는 각 차량의 경로와 함께 해당 차량의 경로를 표시합니다. 누적 부하: 차량이 정류장에서 운반하는 총량 경로.
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
자바
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); }
기본 기능
이 예의 main 함수는 TSP 예이지만 위에 설명된 수요 및 용량 측정기준입니다.
프로그램 실행
전체 프로그램은 다음 섹션에서 설명합니다. 프로그램을 실행하면 다음과 같은 출력이 표시됩니다.
Objective: 6208 Route for vehicle 0: 0 Load(0) -> 4 Load(0) -> 3 Load(4) -> 1 Load(6) -> 7 Load(7) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 1: 0 Load(0) -> 14 Load(0) -> 16 Load(4) -> 10 Load(12) -> 9 Load(14) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 2: 0 Load(0) -> 12 Load(0) -> 11 Load(2) -> 15 Load(3) -> 13 Load(11) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 3: 0 Load(0) -> 8 Load(0) -> 2 Load(8) -> 6 Load(9) -> 5 Load(13) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Total Distance of all routes: 6208m Total Load of all routes: 60
경로의 각 위치에 대해 다음과 같은 결과가 표시됩니다.
- 위치의 색인입니다.
차량이 위치를 떠날 때 이동하는 총 하중입니다.
경로는 아래와 같습니다.
프로그램 이수
정전식 차량 경로 지정 문제를 위한 전체 프로그램은 아래에 나와 있습니다.
Python
"""Capacited Vehicles Routing Problem (CVRP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}") def main(): """Solve the CVRP problem.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Capacity constraint. def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", ) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) search_parameters.local_search_metaheuristic = ( routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH ) search_parameters.time_limit.FromSeconds(1) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <vector> #include "google/protobuf/duration.pb.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15}; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpCapacity() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Capacity constraint. const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters(); search_parameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); search_parameters.set_local_search_metaheuristic( LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH); search_parameters.mutable_time_limit()->set_seconds(1); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(search_parameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpCapacity(); return EXIT_SUCCESS; }
자바
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.LocalSearchMetaheuristic; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import com.google.protobuf.Duration; import java.util.logging.Logger; /** Minimal VRP. */ public final class VrpCapacity { private static final Logger logger = Logger.getLogger(VrpCapacity.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15}; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH) .setTimeLimit(Duration.newBuilder().setSeconds(1).build()) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } private VrpCapacity() {} }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; using Google.Protobuf.WellKnownTypes; // Duration /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpCapacity { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch; searchParameters.TimeLimit = new Duration { Seconds = 1 }; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
다른 유형의 차량 경로 문제에 대한 몇 가지 예가 있습니다. 제약조건(GitHub) 이름에 'vrp'가 있는 예를 찾아보세요.
문제에 해결책이 없으면 어떻게 되나요?
CVRP와 같은 제약 조건이 있는 라우팅 문제는 현실적으로 예를 들어 아이템의 총 수량이 수송된 차량이 차량의 총 적재량을 초과합니다. 이러한 문제를 해결하려고 한다면 문제가 있을 경우 이 문제 해결사는 철저한 검색을 실행해서 결국 포기하고 프로그램을 중단해야 합니다.
일반적으로는 문제가 되지 않습니다. 하지만 다음과 같은 몇 가지 방법이 있습니다. 문제에 해결책이 없을 때 프로그램을 오랫동안 실행하지 않도록 할 수 있습니다.
- 설정 메뉴에서 시간 제한을 프로그램을 사용하여 해결책을 찾지 못하더라도 검색을 중지합니다. 하지만 문제에 긴 검색이 필요한 해결책이 있는 경우 프로그램이 시간 제한에 도달 한 후에 해결책을 찾을 수 있습니다.
- 위치 방문 중단에 대한 페널티를 설정합니다. 이를 통해 문제 해결사는 '솔루션'을 반환합니다. 일부 위치를 방문하지 않을 때 있습니다. 벌금 및 방문수 감소를 참조하세요.
일반적으로 주어진 문제에 해결책이 있는지 알기 어려울 수 있습니다. 심지어 총 수요가 총 용량을 초과하지 않는 CVRP로, 차량에 들어가게 되는 모든 품목은 여러 가지 배낭 문제와도 같습니다.