محدودیت های منابع

تاکنون، ما به دنبال مشکلات مسیریابی با محدودیت‌هایی بوده‌ایم که در طول سفر وسیله نقلیه اعمال می‌شود. در مرحله بعد، ما یک VRPTW را ارائه می کنیم که در انبار نیز محدودیت هایی دارد: همه وسایل نقلیه باید قبل از خروج از انبار بارگیری شوند و پس از بازگشت تخلیه شوند. از آنجایی که تنها دو اسکله بارگیری موجود است، حداکثر دو وسیله نقلیه را می توان همزمان بارگیری یا تخلیه کرد. در نتیجه، برخی از وسایل نقلیه باید منتظر بارگیری برخی دیگر باشند که خروج آنها از انبار را به تاخیر می اندازد. مشکل یافتن مسیرهای خودرو بهینه برای VRPTW است که محدودیت های بارگیری و تخلیه در انبار را نیز برآورده می کند.

مثال VRPTW با محدودیت منابع

نمودار زیر یک VRPTW را با محدودیت منابع نشان می دهد.

حل مثال با OR-Tools

بخش های زیر نحوه حل VRPTW با محدودیت های منابع را با استفاده از OR-Tools نشان می دهد. برخی از کدهای مثال مانند مثال قبلی VRPTW است، بنابراین ما فقط قسمت هایی را که جدید هستند توضیح می دهیم.

داده ها را ایجاد کنید

کد زیر داده های مثال را ایجاد می کند.

پایتون

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

جاوا

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

سی شارپ

    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

داده ها شامل موارد زیر است:

  • time_matrix : آرایه ای از زمان های سفر بین مکان ها.
  • time_windows : آرایه ای از پنجره های زمانی برای بازدیدهای درخواستی از مکان ها.
  • vehicle_load_time : زمان مورد نیاز برای بارگیری وسیله نقلیه.
  • vehicle_unload_time : زمان مورد نیاز برای تخلیه یک وسیله نقلیه.
  • depot_capacity : حداکثر تعداد وسایل نقلیه ای که می توانند همزمان بارگیری یا تخلیه کنند.

پنجره های زمانی برای بارگیری و تخلیه اضافه کنید

کد زیر پنجره های زمانی را برای بارگیری و تخلیه وسایل نقلیه در دپو اضافه می کند. این پنجره‌ها که با روش FixedDurationIntervalVar ایجاد شده‌اند، پنجره‌های زمانی متغیر هستند، به این معنی که زمان شروع و پایان ثابتی ندارند (برخلاف پنجره‌های زمانی در مکان‌ها). پهنای پنجره ها با vehicle_load_time و vehicle_unload_time مشخص می شود که اتفاقاً در این مثال یکسان است.

پایتون

    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

C++

  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

جاوا

    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

سی شارپ

        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

محدودیت های منابع را در انبار اضافه کنید

کد زیر این محدودیت را ایجاد می کند که حداکثر دو وسیله نقلیه را می توان همزمان بارگیری یا تخلیه کرد.

پایتون

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

C++

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

جاوا

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

سی شارپ

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

depot_capacity حداکثر تعداد وسایل نقلیه ای است که می توان همزمان بارگیری یا تخلیه کرد که در این مثال 2 عدد است.

depot_usage یک برداری است که حاوی مقادیر نسبی فضای مورد نیاز هر وسیله نقلیه در هنگام بارگیری (یا تخلیه) است. در این مثال، فرض می‌کنیم که همه وسایل نقلیه به فضای یکسانی نیاز دارند، بنابراین depot_usage شامل همه موارد است. به این معنی که حداکثر تعداد وسایل نقلیه ای که می توان همزمان بارگیری کرد 2 عدد است.

اجرای برنامه

در زیر خروجی برنامه را نشان می دهد.

Route for vehicle 0:
 0 Time(5,5) ->  8 Time(8,8) ->  14 Time(11,11) -> 16 Time(13,13) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 1:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 2:
 0 Time(5,5) -> 7 Time(7,7) -> 1 Time(11,11) -> 4 Time(13,13) -> 3 Time(14,14) -> 0 Time(25,25)
Time of the route: 25min

Route for vehicle 3:
 0 Time(0,0) -> 9 Time(2,3) -> 5 Time(4,5) -> 6 Time(6,9) -> 2 Time(10,12) -> 10 Time(14,16) ->
 0 Time(25,25)
Time of the route: 25min

Total time of all routes: 90min

مثال قبلی VRPTW را برای توضیح خروجی ببینید.

توجه داشته باشید که وسایل نقلیه 1 و 3 در زمان 0 از انبار خارج می شوند. وسایل نقلیه 0 و 2 که باید منتظر بارگیری بقیه باشند، در زمان 5 حرکت می کنند که مقدار vehicle_load_time است.

نمودار زیر راه حل را نشان می دهد.

برنامه های کامل

برنامه های کامل برای مشکل مسیریابی وسیله نقلیه با ظرفیت با محدودیت منابع در زیر نشان داده شده است.

پایتون

"""Vehicles Routing Problem (VRP) with Resource Constraints."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)}, {solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        60,  # allow waiting time
        60,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == 0:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][0][0], data["time_windows"][0][1]
        )

    # Add resource constraints at the depot.
    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)
    else:
        print("No solution found !")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Add resource constraints at the depot.
  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

جاوا

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.IntervalVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.Solver;
import com.google.ortools.constraintsolver.main;
import java.util.Arrays;
import java.util.logging.Logger;

/** Minimal VRP with Resource Constraints.*/
public class VrpResources {
  private static final Logger logger = Logger.getLogger(VrpResources.class.getName());

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Add resource constraints at the depot.
    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

سی شارپ

using System;
using System.Linq;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Resource Constraints.
/// </summary>
public class VrpResources
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Add resource constraints at the depot.
        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}