リソースの制約

ここまでは、適用される制約があるルーティングの問題を見てきました。 移動中。次に、VRPTW を取り上げます。 デポでも制約があります。つまり、すべての車両は、事前に 出荷し、返送時に積み下ろされる。 荷物用ホルダーが 2 つしかないため、乗車できる車両は 2 台まで 同時に行うことはできません。そのため、一部の車両は到着を待つ必要があり、 他の乗客は輸送施設からの出発を遅らせようとしていました。問題は、 VRPTW に最適な車両ルートを見つけて、負荷と デポで制約をアンロードする。

リソースの制約がある VRPTW の例

下の図は、リソースの制約がある VRPTW を示しています。

OR-Tools を使用して例を解く

以降のセクションでは、リソースの制約がある VRPTW の解決方法について説明します。 抽出できますこの例のコードの一部は、前のモジュールと同じものです。 VRPTW の例であるため、ここでは 新しい部分を記述します。

データを作成する

次のコードは、この例のデータを作成します。

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

Java

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

C#

    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

データには次のものが含まれます。

  • time_matrix: 地点間の移動時間の配列。
  • time_windows: ビジネスへの訪問リクエストの対象期間の配列。
  • vehicle_load_time: 車両の積載に必要な時間。
  • vehicle_unload_time: 車両を積み下ろすのに必要な時間。
  • depot_capacity: 荷物の積載または取り出しが可能な最大台数 できます。

読み込みと読み込み解除の時間枠を追加する

次のコードは、車両の積み下ろしを行う時間帯を追加します。 Depot です。 メソッド FixedDurationIntervalVar によって作成されるこれらのウィンドウは、 可変時間ウィンドウ。開始時刻と終了時刻は固定されていません。 (各ロケーションのタイム ウィンドウとは異なります)。ウィンドウの幅は、 vehicle_load_timevehicle_unload_time で指定され、これらはたまたま この例でも同じです

Python

    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

C++

  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

Java

    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

C#

        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

デポでリソース制約を追加する

次のコードは、車両を 2 台までとする制約を作成します。 同時に行うことはできません。

Python

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

C++

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

Java

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

C#

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

depot_capacity は、積載可能な車両または車両の最大数です 同時にアンロードされます(この例では 2)。

depot_usage は、 各車両の積み荷(積み下ろし)における割合です。この例では、 車両は同じ量のスペースを必要とするため、depot_usage にはすべてのスペースが含まれます。 つまり、1 台で積み込むことができる車両の最大数が 2 です。

プログラムの実行

プログラムの出力は次のとおりです。

Route for vehicle 0:
 0 Time(5,5) ->  8 Time(8,8) ->  14 Time(11,11) -> 16 Time(13,13) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 1:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 2:
 0 Time(5,5) -> 7 Time(7,7) -> 1 Time(11,11) -> 4 Time(13,13) -> 3 Time(14,14) -> 0 Time(25,25)
Time of the route: 25min

Route for vehicle 3:
 0 Time(0,0) -> 9 Time(2,3) -> 5 Time(4,5) -> 6 Time(6,9) -> 2 Time(10,12) -> 10 Time(14,16) ->
 0 Time(25,25)
Time of the route: 25min

Total time of all routes: 90min

前述の VRPTW の例をご覧ください。 出力の説明をご覧ください。

車両 1 と 3 は時間 0 に車両基地を出発しています。車両 0 と 2 は、 他の要素が読み込まれるのを待つ必要があり、時間 5 で出発し、 vehicle_load_time

下の図にその解決策を示します。

プログラムを完了する

リソースを使用した静電容量車両ルート選択の問題の完全なプログラム 下に示します。

Python

"""Vehicles Routing Problem (VRP) with Resource Constraints."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)}, {solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        60,  # allow waiting time
        60,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == 0:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][0][0], data["time_windows"][0][1]
        )

    # Add resource constraints at the depot.
    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)
    else:
        print("No solution found !")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Add resource constraints at the depot.
  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.IntervalVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.Solver;
import com.google.ortools.constraintsolver.main;
import java.util.Arrays;
import java.util.logging.Logger;

/** Minimal VRP with Resource Constraints.*/
public class VrpResources {
  private static final Logger logger = Logger.getLogger(VrpResources.class.getName());

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Add resource constraints at the depot.
    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Linq;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Resource Constraints.
/// </summary>
public class VrpResources
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Add resource constraints at the depot.
        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}