En esta sección, se describe el solucionador de problemas de programación de restricciones original, que se reemplazó por el resolutor de CP-SAT superior.
En las siguientes secciones, se describe cómo resolver el ejemplo descrito en la sección de CP-SAT, esta vez con el solucionador de problemas de CP original. Si insistes en usar el solucionador de problemas de CP original, puedes explorar la referencia de la API. Ten en cuenta que el solucionador de problemas de CP original es la base de la biblioteca de enrutamiento, y su API puede ser necesaria para personalizar un modelo de enrutamiento.
Importa las bibliotecas
Con el siguiente código, se importa la biblioteca requerida.
Python
from ortools.constraint_solver import pywrapcp
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger;
C#
using System; using Google.OrTools.ConstraintSolver;
Cómo declarar el solucionador
El siguiente código declara el solucionador.
Python
solver = pywrapcp.Solver("CPSimple")
C++
Solver solver("CpSimple");
Java
Solver solver = new Solver("CpSimple");
C#
Solver solver = new Solver("CpSimple");
Crea las variables
El siguiente código crea las variables para el problema.
El solucionador crea tres variables, x, y y z, cada una de las cuales puede tomar los valores 0, 1 o 2.
Python
num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z")
C++
const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");
Java
final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z");
C#
const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z");
Crea la restricción
Con el siguiente código, se crea la restricción x ≠ y
.
Python
solver.Add(x != y) print("Number of constraints: ", solver.Constraints())
C++
solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints());
Java
solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints());
C#
solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}");
Cómo llamar al solucionador
El siguiente código llama al solucionador.
El generador de decisiones es la entrada principal del solucionador de problemas de CP original. Contiene lo siguiente:
vars
: Es un array que contiene las variables del problema.- Una regla para elegir la siguiente variable a la que se le asignará un valor.
- Una regla para elegir el siguiente valor que se asignará a esa variable.
Consulta Creador de decisiones para obtener más información.
Python
decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE )
C++
DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
Java
final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
C#
DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
Imprimir la solución
El código para la impresora de la solución, que muestra cada solución a medida que la encuentra el solucionador, se muestra en la siguiente sección.
Como hay más de una solución para nuestro problema, se puede iterar a través de las soluciones con un bucle while solver.NextSolution()
. (Ten en cuenta que esta opción es diferente de la impresora de solución para el solucionador de problemas CP-SAT).
Python
count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}")
C++
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions();
Java
int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions());
C#
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}");
Resultados que muestra el solucionador
Estas son las 18 soluciones que encontró el solucionador:
Number of constraints: 1 Solution 1: x = 0 y = 1 z = 0 Solution 2: x = 0 y = 1 z = 1 Solution 3: x = 0 y = 1 z = 2 Solution 4: x = 0 y = 2 z = 0 Solution 5: x = 0 y = 2 z = 1 Solution 6: x = 0 y = 2 z = 2 Solution 7: x = 1 y = 0 z = 0 Solution 8: x = 1 y = 0 z = 1 Solution 9: x = 1 y = 0 z = 2 Solution 10: x = 1 y = 2 z = 0 Solution 11: x = 1 y = 2 z = 1 Solution 12: x = 1 y = 2 z = 2 Solution 13: x = 2 y = 0 z = 0 Solution 14: x = 2 y = 0 z = 1 Solution 15: x = 2 y = 0 z = 2 Solution 16: x = 2 y = 1 z = 0 Solution 17: x = 2 y = 1 z = 1 Solution 18: x = 2 y = 1 z = 2 Number of solutions found: 18 Advanced usage: Problem solved in 2 ms Memory usage: 13918208 bytes
Completar programa
Aquí se muestran los programas completos para el ejemplo que usa el solucionador de problemas de PC original.
Python
"""Simple Constraint optimization example.""" from ortools.constraint_solver import pywrapcp def main(): """Entry point of the program.""" # Instantiate the solver. solver = pywrapcp.Solver("CPSimple") # Create the variables. num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z") # Constraint 0: x != y. solver.Add(x != y) print("Number of constraints: ", solver.Constraints()) # Solve the problem. decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE ) # Print solution on console. count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}") print("Advanced usage:") print(f"Problem solved in {solver.WallTime()}ms") print(f"Memory usage: {pywrapcp.Solver.MemoryUsage()}bytes") if __name__ == "__main__": main()
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { void SimpleCpProgram() { // Instantiate the solver. Solver solver("CpSimple"); // Create the variables. const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z"); // Constraint 0: x != y.. solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints()); // Solve the problem. DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions(); LOG(INFO) << "Advanced usage:" << std::endl << "Problem solved in " << std::to_string(solver.wall_time()) << "ms" << std::endl << "Memory usage: " << std::to_string(Solver::MemoryUsage()) << "bytes"; } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::SimpleCpProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger; /** Simple CP Program.*/ public class SimpleCpProgram { private SimpleCpProgram() {} private static final Logger logger = Logger.getLogger(SimpleCpProgram.class.getName()); public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints()); // Solve the problem. final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions()); logger.info(String.format("Advanced usage:\nProblem solved in %d ms\nMemory usage: %d bytes", solver.wallTime(), Solver.memoryUsage())); } }
C#
using System; using Google.OrTools.ConstraintSolver; /// <summary> /// This is a simple CP program. /// </summary> public class SimpleCpProgram { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}"); // Solve the problem. DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}"); Console.WriteLine("Advanced usage:"); Console.WriteLine($"Problem solved in {solver.WallTime()}ms"); Console.WriteLine($"Memory usage: {Solver.MemoryUsage()}bytes"); } }
Encargado de tomar decisiones
La entrada principal del solucionador de problemas de CP original es el compilador de decisiones, que contiene las variables del problema y establece opciones para el solucionador.
En el ejemplo de código de la sección anterior, se crea un compilador de decisiones con el método Phase
(correspondiente al método MakePhase
de C++).
El término Fase se refiere a una fase de la búsqueda. En este ejemplo simple, solo hay una fase, pero para problemas más complejos, el compilador de decisiones puede tener más de una fase, de modo que la persona que resuelve el problema puede emplear diferentes estrategias de búsqueda de una fase a la siguiente.
El método Phase
tiene tres parámetros de entrada:
vars
: Es un array que contiene las variables del problema, que en este caso es[x, y, z]
.IntVarStrategy
: Es la regla para elegir la siguiente variable no delimitada a fin de asignar un valor. Aquí, el código usa laCHOOSE_FIRST_UNBOUND
predeterminada, lo que significa que, en cada paso, la resolución selecciona la primera variable no delimitada en el orden en que ocurren en el arreglo de variables pasado al métodoPhase
.IntValueStrategy
: Es la regla para elegir el siguiente valor que se asignará a una variable. Aquí, el código usa elASSIGN_MIN_VALUE
predeterminado, que selecciona el valor más pequeño que aún no se haya probado para la variable. Esto asigna valores en orden creciente. Otra opción esASSIGN_MAX_VALUE
, en cuyo caso, el solucionador asigna valores en orden descendente.