Risolutore CP originale

Questa sezione descrive il risolutore originale della programmazione di vincoli, che è stato sostituito dal risolutore CP-SAT superiore.

Le seguenti sezioni descrivono come risolvere l'esempio descritto nella sezione CP-SAT, questa volta utilizzando il risolutore CP originale. Se vuoi comunque utilizzare il risolutore CP originale, puoi consultare il riferimento API. Tieni presente che il risolutore CP originale è la base della libreria di routing e la sua API potrebbe essere necessaria per personalizzare un modello di routing.

Importa le librerie

Il seguente codice importa la libreria richiesta.

Python

from ortools.constraint_solver import pywrapcp

C++

#include <ostream>
#include <string>

#include "ortools/constraint_solver/constraint_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;
import java.util.logging.Logger;

C#

using System;
using Google.OrTools.ConstraintSolver;

Dichiara il risolutore

Il codice seguente dichiara il risolutore.

Python

solver = pywrapcp.Solver("CPSimple")

C++

Solver solver("CpSimple");

Java

Solver solver = new Solver("CpSimple");

C#

Solver solver = new Solver("CpSimple");

Crea le variabili

Il seguente codice crea le variabili per il problema.

Il risolutore crea tre variabili, x, y e z, ognuna delle quali può assumere i valori 0, 1 o 2.

Python

num_vals = 3
x = solver.IntVar(0, num_vals - 1, "x")
y = solver.IntVar(0, num_vals - 1, "y")
z = solver.IntVar(0, num_vals - 1, "z")

C++

const int64_t num_vals = 3;
IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x");
IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y");
IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");

Java

final long numVals = 3;
final IntVar x = solver.makeIntVar(0, numVals - 1, "x");
final IntVar y = solver.makeIntVar(0, numVals - 1, "y");
final IntVar z = solver.makeIntVar(0, numVals - 1, "z");

C#

const long numVals = 3;
IntVar x = solver.MakeIntVar(0, numVals - 1, "x");
IntVar y = solver.MakeIntVar(0, numVals - 1, "y");
IntVar z = solver.MakeIntVar(0, numVals - 1, "z");

Crea il vincolo

Il codice seguente crea il vincolo x &ne; y.

Python

solver.Add(x != y)
print("Number of constraints: ", solver.Constraints())

C++

solver.AddConstraint(solver.MakeAllDifferent({x, y}));
LOG(INFO) << "Number of constraints: "
          << std::to_string(solver.constraints());

Java

solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y}));
logger.info("Number of constraints: " + solver.constraints());

C#

solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y }));
Console.WriteLine($"Number of constraints: {solver.Constraints()}");

Chiama il risolutore

Il codice seguente chiama il risolutore.

Il generatore di decisioni è l'input principale per il risolutore CP originale. Contiene quanto segue:

  • vars: array contenente le variabili per il problema.
  • Una regola per scegliere la variabile successiva a cui assegnare un valore.
  • Una regola per scegliere il valore successivo da assegnare alla variabile.

Per i dettagli, consulta Generatore di decisioni.

Python

decision_builder = solver.Phase(
    [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE
)

C++

DecisionBuilder* const db = solver.MakePhase(
    {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);

Java

final DecisionBuilder db = solver.makePhase(
    new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);

C#

DecisionBuilder db =
    solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);

Nella sezione seguente viene mostrato il codice della stampante della soluzione, che mostra ogni soluzione così come la trova il risolutore.

Poiché esistono più soluzioni al nostro problema, è possibile eseguire l'iterazione delle soluzioni con un loop while solver.NextSolution(). Tieni presente che questa procedura funziona in modo diverso rispetto alla stampante della soluzione per il risolutore CP-SAT.

Python

count = 0
solver.NewSearch(decision_builder)
while solver.NextSolution():
    count += 1
    solution = f"Solution {count}:\n"
    for var in [x, y, z]:
        solution += f" {var.Name()} = {var.Value()}"
    print(solution)
solver.EndSearch()
print(f"Number of solutions found: {count}")

C++

int count = 0;
solver.NewSearch(db);
while (solver.NextSolution()) {
  ++count;
  LOG(INFO) << "Solution " << count << ":" << std::endl
            << " x=" << x->Value() << " y=" << y->Value()
            << " z=" << z->Value();
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << solver.solutions();

Java

int count = 0;
solver.newSearch(db);
while (solver.nextSolution()) {
  ++count;
  logger.info(
      String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value()));
}
solver.endSearch();
logger.info("Number of solutions found: " + solver.solutions());

C#

int count = 0;
solver.NewSearch(db);
while (solver.NextSolution())
{
    ++count;
    Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}");
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {solver.Solutions()}");

Risultati restituiti dal risolutore

Ecco le 18 soluzioni trovate dal risolutore:

Number of constraints:  1
Solution 1:
 x = 0 y = 1 z = 0
Solution 2:
 x = 0 y = 1 z = 1
Solution 3:
 x = 0 y = 1 z = 2
Solution 4:
 x = 0 y = 2 z = 0
Solution 5:
 x = 0 y = 2 z = 1
Solution 6:
 x = 0 y = 2 z = 2
Solution 7:
 x = 1 y = 0 z = 0
Solution 8:
 x = 1 y = 0 z = 1
Solution 9:
 x = 1 y = 0 z = 2
Solution 10:
 x = 1 y = 2 z = 0
Solution 11:
 x = 1 y = 2 z = 1
Solution 12:
 x = 1 y = 2 z = 2
Solution 13:
 x = 2 y = 0 z = 0
Solution 14:
 x = 2 y = 0 z = 1
Solution 15:
 x = 2 y = 0 z = 2
Solution 16:
 x = 2 y = 1 z = 0
Solution 17:
 x = 2 y = 1 z = 1
Solution 18:
 x = 2 y = 1 z = 2
Number of solutions found:  18
Advanced usage:
Problem solved in  2 ms
Memory usage:  13918208 bytes

Completa il programma

Ecco i programmi completi per l'esempio utilizzando il risolutore CP originale.

Python

"""Simple Constraint optimization example."""

from ortools.constraint_solver import pywrapcp


def main():
    """Entry point of the program."""
    # Instantiate the solver.
    solver = pywrapcp.Solver("CPSimple")

    # Create the variables.
    num_vals = 3
    x = solver.IntVar(0, num_vals - 1, "x")
    y = solver.IntVar(0, num_vals - 1, "y")
    z = solver.IntVar(0, num_vals - 1, "z")

    # Constraint 0: x != y.
    solver.Add(x != y)
    print("Number of constraints: ", solver.Constraints())

    # Solve the problem.
    decision_builder = solver.Phase(
        [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE
    )

    # Print solution on console.
    count = 0
    solver.NewSearch(decision_builder)
    while solver.NextSolution():
        count += 1
        solution = f"Solution {count}:\n"
        for var in [x, y, z]:
            solution += f" {var.Name()} = {var.Value()}"
        print(solution)
    solver.EndSearch()
    print(f"Number of solutions found: {count}")

    print("Advanced usage:")
    print(f"Problem solved in {solver.WallTime()}ms")
    print(f"Memory usage: {pywrapcp.Solver.MemoryUsage()}bytes")


if __name__ == "__main__":
    main()

C++

#include <ostream>
#include <string>

#include "ortools/constraint_solver/constraint_solver.h"

namespace operations_research {

void SimpleCpProgram() {
  // Instantiate the solver.
  Solver solver("CpSimple");

  // Create the variables.
  const int64_t num_vals = 3;
  IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x");
  IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y");
  IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");

  // Constraint 0: x != y..
  solver.AddConstraint(solver.MakeAllDifferent({x, y}));
  LOG(INFO) << "Number of constraints: "
            << std::to_string(solver.constraints());

  // Solve the problem.
  DecisionBuilder* const db = solver.MakePhase(
      {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);

  // Print solution on console.
  int count = 0;
  solver.NewSearch(db);
  while (solver.NextSolution()) {
    ++count;
    LOG(INFO) << "Solution " << count << ":" << std::endl
              << " x=" << x->Value() << " y=" << y->Value()
              << " z=" << z->Value();
  }
  solver.EndSearch();
  LOG(INFO) << "Number of solutions found: " << solver.solutions();

  LOG(INFO) << "Advanced usage:" << std::endl
            << "Problem solved in " << std::to_string(solver.wall_time())
            << "ms" << std::endl
            << "Memory usage: " << std::to_string(Solver::MemoryUsage())
            << "bytes";
}

}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::SimpleCpProgram();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;
import java.util.logging.Logger;

/** Simple CP Program.*/
public class SimpleCpProgram {
  private SimpleCpProgram() {}

  private static final Logger logger = Logger.getLogger(SimpleCpProgram.class.getName());

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the solver.
    Solver solver = new Solver("CpSimple");

    // Create the variables.
    final long numVals = 3;
    final IntVar x = solver.makeIntVar(0, numVals - 1, "x");
    final IntVar y = solver.makeIntVar(0, numVals - 1, "y");
    final IntVar z = solver.makeIntVar(0, numVals - 1, "z");

    // Constraint 0: x != y..
    solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y}));
    logger.info("Number of constraints: " + solver.constraints());

    // Solve the problem.
    final DecisionBuilder db = solver.makePhase(
        new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);

    // Print solution on console.
    int count = 0;
    solver.newSearch(db);
    while (solver.nextSolution()) {
      ++count;
      logger.info(
          String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value()));
    }
    solver.endSearch();
    logger.info("Number of solutions found: " + solver.solutions());

    logger.info(String.format("Advanced usage:\nProblem solved in %d ms\nMemory usage: %d bytes",
        solver.wallTime(), Solver.memoryUsage()));
  }
}

C#

using System;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   This is a simple CP program.
/// </summary>
public class SimpleCpProgram
{
    public static void Main(String[] args)
    {
        // Instantiate the solver.
        Solver solver = new Solver("CpSimple");

        // Create the variables.
        const long numVals = 3;
        IntVar x = solver.MakeIntVar(0, numVals - 1, "x");
        IntVar y = solver.MakeIntVar(0, numVals - 1, "y");
        IntVar z = solver.MakeIntVar(0, numVals - 1, "z");

        // Constraint 0: x != y..
        solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y }));
        Console.WriteLine($"Number of constraints: {solver.Constraints()}");

        // Solve the problem.
        DecisionBuilder db =
            solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);

        // Print solution on console.
        int count = 0;
        solver.NewSearch(db);
        while (solver.NextSolution())
        {
            ++count;
            Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}");
        }
        solver.EndSearch();
        Console.WriteLine($"Number of solutions found: {solver.Solutions()}");

        Console.WriteLine("Advanced usage:");
        Console.WriteLine($"Problem solved in {solver.WallTime()}ms");
        Console.WriteLine($"Memory usage: {Solver.MemoryUsage()}bytes");
    }
}

Builder decisionale

L'input principale del risolutore CP originale è il generatore di decisioni, che contiene le variabili per il problema e imposta le opzioni per il risolutore.

L'esempio di codice nella sezione precedente crea un generatore di decisioni utilizzando il metodo Phase (corrispondente al metodo C++ MakePhase.

Il termine fase fa riferimento a una fase della ricerca. In questo semplice esempio c'è una sola fase, ma per problemi più complessi il responsabile delle decisioni può avere più di una fase, in modo che il risolutore possa utilizzare strategie di ricerca diverse da una fase all'altra.

Il metodo Phase ha tre parametri di input:

  • vars: un array contenente le variabili per il problema, in questo caso [x, y, z].
  • IntVarStrategy: la regola per scegliere la variabile non associata successiva a cui assegnare un valore. In questo caso, il codice utilizza il valore predefinito CHOOSE_FIRST_UNBOUND, il che significa che, a ogni passaggio, il risolutore seleziona la prima variabile non associata nell'ordine in cui si trova nell'array di variabili trasmesso al metodo Phase.
  • IntValueStrategy: la regola per scegliere il valore successivo da assegnare a una variabile. In questo caso il codice utilizza il valore predefinito ASSIGN_MIN_VALUE, che seleziona il valore più basso che non è stato ancora provato per la variabile. Questa azione assegna i valori in ordine crescente. Un'altra opzione è ASSIGN_MAX_VALUE, nel qual caso il risolutore assegnerà valori in ordine decrescente.