Questa sezione descrive il risolutore originale della programmazione di vincoli, che è stato sostituito dal risolutore CP-SAT superiore.
Le seguenti sezioni descrivono come risolvere l'esempio descritto nella sezione CP-SAT, questa volta utilizzando il risolutore CP originale. Se vuoi comunque utilizzare il risolutore CP originale, puoi consultare il riferimento API. Tieni presente che il risolutore CP originale è la base della libreria di routing e la sua API potrebbe essere necessaria per personalizzare un modello di routing.
Importa le librerie
Il seguente codice importa la libreria richiesta.
Python
from ortools.constraint_solver import pywrapcp
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger;
C#
using System; using Google.OrTools.ConstraintSolver;
Dichiara il risolutore
Il codice seguente dichiara il risolutore.
Python
solver = pywrapcp.Solver("CPSimple")
C++
Solver solver("CpSimple");
Java
Solver solver = new Solver("CpSimple");
C#
Solver solver = new Solver("CpSimple");
Crea le variabili
Il seguente codice crea le variabili per il problema.
Il risolutore crea tre variabili, x, y e z, ognuna delle quali può assumere i valori 0, 1 o 2.
Python
num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z")
C++
const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");
Java
final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z");
C#
const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z");
Crea il vincolo
Il codice seguente crea il vincolo x ≠ y
.
Python
solver.Add(x != y) print("Number of constraints: ", solver.Constraints())
C++
solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints());
Java
solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints());
C#
solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}");
Chiama il risolutore
Il codice seguente chiama il risolutore.
Il generatore di decisioni è l'input principale per il risolutore CP originale. Contiene quanto segue:
vars
: array contenente le variabili per il problema.- Una regola per scegliere la variabile successiva a cui assegnare un valore.
- Una regola per scegliere il valore successivo da assegnare alla variabile.
Per i dettagli, consulta Generatore di decisioni.
Python
decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE )
C++
DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
Java
final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
C#
DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
Stampa la soluzione
Nella sezione seguente viene mostrato il codice della stampante della soluzione, che mostra ogni soluzione così come la trova il risolutore.
Poiché esistono più soluzioni al nostro problema, è possibile eseguire l'iterazione
delle soluzioni con un loop while solver.NextSolution()
. Tieni presente che questa procedura funziona in modo diverso rispetto alla stampante della soluzione per il risolutore CP-SAT.
Python
count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}")
C++
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions();
Java
int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions());
C#
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}");
Risultati restituiti dal risolutore
Ecco le 18 soluzioni trovate dal risolutore:
Number of constraints: 1 Solution 1: x = 0 y = 1 z = 0 Solution 2: x = 0 y = 1 z = 1 Solution 3: x = 0 y = 1 z = 2 Solution 4: x = 0 y = 2 z = 0 Solution 5: x = 0 y = 2 z = 1 Solution 6: x = 0 y = 2 z = 2 Solution 7: x = 1 y = 0 z = 0 Solution 8: x = 1 y = 0 z = 1 Solution 9: x = 1 y = 0 z = 2 Solution 10: x = 1 y = 2 z = 0 Solution 11: x = 1 y = 2 z = 1 Solution 12: x = 1 y = 2 z = 2 Solution 13: x = 2 y = 0 z = 0 Solution 14: x = 2 y = 0 z = 1 Solution 15: x = 2 y = 0 z = 2 Solution 16: x = 2 y = 1 z = 0 Solution 17: x = 2 y = 1 z = 1 Solution 18: x = 2 y = 1 z = 2 Number of solutions found: 18 Advanced usage: Problem solved in 2 ms Memory usage: 13918208 bytes
Completa il programma
Ecco i programmi completi per l'esempio utilizzando il risolutore CP originale.
Python
"""Simple Constraint optimization example.""" from ortools.constraint_solver import pywrapcp def main(): """Entry point of the program.""" # Instantiate the solver. solver = pywrapcp.Solver("CPSimple") # Create the variables. num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z") # Constraint 0: x != y. solver.Add(x != y) print("Number of constraints: ", solver.Constraints()) # Solve the problem. decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE ) # Print solution on console. count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}") print("Advanced usage:") print(f"Problem solved in {solver.WallTime()}ms") print(f"Memory usage: {pywrapcp.Solver.MemoryUsage()}bytes") if __name__ == "__main__": main()
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { void SimpleCpProgram() { // Instantiate the solver. Solver solver("CpSimple"); // Create the variables. const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z"); // Constraint 0: x != y.. solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints()); // Solve the problem. DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions(); LOG(INFO) << "Advanced usage:" << std::endl << "Problem solved in " << std::to_string(solver.wall_time()) << "ms" << std::endl << "Memory usage: " << std::to_string(Solver::MemoryUsage()) << "bytes"; } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::SimpleCpProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger; /** Simple CP Program.*/ public class SimpleCpProgram { private SimpleCpProgram() {} private static final Logger logger = Logger.getLogger(SimpleCpProgram.class.getName()); public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints()); // Solve the problem. final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions()); logger.info(String.format("Advanced usage:\nProblem solved in %d ms\nMemory usage: %d bytes", solver.wallTime(), Solver.memoryUsage())); } }
C#
using System; using Google.OrTools.ConstraintSolver; /// <summary> /// This is a simple CP program. /// </summary> public class SimpleCpProgram { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}"); // Solve the problem. DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}"); Console.WriteLine("Advanced usage:"); Console.WriteLine($"Problem solved in {solver.WallTime()}ms"); Console.WriteLine($"Memory usage: {Solver.MemoryUsage()}bytes"); } }
Builder decisionale
L'input principale del risolutore CP originale è il generatore di decisioni, che contiene le variabili per il problema e imposta le opzioni per il risolutore.
L'esempio di codice nella sezione precedente crea un generatore di decisioni utilizzando il metodo Phase
(corrispondente al metodo C++ MakePhase
.
Il termine fase fa riferimento a una fase della ricerca. In questo semplice esempio c'è una sola fase, ma per problemi più complessi il responsabile delle decisioni può avere più di una fase, in modo che il risolutore possa utilizzare strategie di ricerca diverse da una fase all'altra.
Il metodo Phase
ha tre parametri di input:
vars
: un array contenente le variabili per il problema, in questo caso[x, y, z]
.IntVarStrategy
: la regola per scegliere la variabile non associata successiva a cui assegnare un valore. In questo caso, il codice utilizza il valore predefinitoCHOOSE_FIRST_UNBOUND
, il che significa che, a ogni passaggio, il risolutore seleziona la prima variabile non associata nell'ordine in cui si trova nell'array di variabili trasmesso al metodoPhase
.IntValueStrategy
: la regola per scegliere il valore successivo da assegnare a una variabile. In questo caso il codice utilizza il valore predefinitoASSIGN_MIN_VALUE
, che seleziona il valore più basso che non è stato ancora provato per la variabile. Questa azione assegna i valori in ordine crescente. Un'altra opzione èASSIGN_MAX_VALUE
, nel qual caso il risolutore assegnerà valori in ordine decrescente.