本節說明原始限製程式設計解題工具,並替換為卓越的 CP-SAT 解題器。
以下各節說明如何使用原始 CP 解題工具,解決 CP-SAT 一節中所述的範例。如果您堅持使用原始 CP 解題器,可以瀏覽 API 參考資料。請注意,原始 CP 解題器是轉送程式庫的基礎,因此自訂轉送模型時可能需要使用相關 API。
匯入程式庫
下列程式碼會匯入必要的程式庫。
Python
from ortools.constraint_solver import pywrapcp
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger;
C#
using System; using Google.OrTools.ConstraintSolver;
宣告解題工具
以下程式碼會宣告解題工具。
Python
solver = pywrapcp.Solver("CPSimple")
C++
Solver solver("CpSimple");
Java
Solver solver = new Solver("CpSimple");
C#
Solver solver = new Solver("CpSimple");
建立變數
下列程式碼會建立該問題的變數。
解題工具會建立三個變數 (x、y 和 z),每個變數各自接受 0、1 或 2 值。
Python
num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z")
C++
const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");
Java
final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z");
C#
const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z");
建立限制
下列程式碼會建立限制 x ≠ y。
Python
solver.Add(x != y)
print("Number of constraints: ", solver.Constraints())
C++
solver.AddConstraint(solver.MakeAllDifferent({x, y}));
LOG(INFO) << "Number of constraints: "
<< std::to_string(solver.constraints());
Java
solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y}));
logger.info("Number of constraints: " + solver.constraints());
C#
solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y }));
Console.WriteLine($"Number of constraints: {solver.Constraints()}");
呼叫解題工具
以下程式碼會呼叫解題工具。
決策建構工具是原始 CP 解題工具的主要輸入內容。其中包含下列項目:
vars:包含問題變數的陣列。- 用於選擇下一個變數要指派值的規則。
- 選擇要指派給該變數的下一個值的規則。
詳情請參閱「決策建立工具」。
Python
decision_builder = solver.Phase(
[x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE
)
C++
DecisionBuilder* const db = solver.MakePhase(
{x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
Java
final DecisionBuilder db = solver.makePhase(
new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
C#
DecisionBuilder db =
solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
列印解決方案
解決方案印表機的程式碼會在解析器找到解決方案時顯示。
由於問題有很多個解決方案,因此您可以使用 while solver.NextSolution() 迴圈疊代解決方案。(請注意,運作方式與 CP-SAT 解析器的解決方案印表機不同)。
Python
count = 0
solver.NewSearch(decision_builder)
while solver.NextSolution():
count += 1
solution = f"Solution {count}:\n"
for var in [x, y, z]:
solution += f" {var.Name()} = {var.Value()}"
print(solution)
solver.EndSearch()
print(f"Number of solutions found: {count}")
C++
int count = 0;
solver.NewSearch(db);
while (solver.NextSolution()) {
++count;
LOG(INFO) << "Solution " << count << ":" << std::endl
<< " x=" << x->Value() << " y=" << y->Value()
<< " z=" << z->Value();
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << solver.solutions();
Java
int count = 0;
solver.newSearch(db);
while (solver.nextSolution()) {
++count;
logger.info(
String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value()));
}
solver.endSearch();
logger.info("Number of solutions found: " + solver.solutions());
C#
int count = 0;
solver.NewSearch(db);
while (solver.NextSolution())
{
++count;
Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}");
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {solver.Solutions()}");
解題工具傳回的結果
以下是解題工具找到的 18 個解決方案:
Number of constraints: 1 Solution 1: x = 0 y = 1 z = 0 Solution 2: x = 0 y = 1 z = 1 Solution 3: x = 0 y = 1 z = 2 Solution 4: x = 0 y = 2 z = 0 Solution 5: x = 0 y = 2 z = 1 Solution 6: x = 0 y = 2 z = 2 Solution 7: x = 1 y = 0 z = 0 Solution 8: x = 1 y = 0 z = 1 Solution 9: x = 1 y = 0 z = 2 Solution 10: x = 1 y = 2 z = 0 Solution 11: x = 1 y = 2 z = 1 Solution 12: x = 1 y = 2 z = 2 Solution 13: x = 2 y = 0 z = 0 Solution 14: x = 2 y = 0 z = 1 Solution 15: x = 2 y = 0 z = 2 Solution 16: x = 2 y = 1 z = 0 Solution 17: x = 2 y = 1 z = 1 Solution 18: x = 2 y = 1 z = 2 Number of solutions found: 18 Advanced usage: Problem solved in 2 ms Memory usage: 13918208 bytes
完成計畫
以下是使用原始 CP 解題工具的範例完整程式。
Python
"""Simple Constraint optimization example."""
from ortools.constraint_solver import pywrapcp
def main():
"""Entry point of the program."""
# Instantiate the solver.
solver = pywrapcp.Solver("CPSimple")
# Create the variables.
num_vals = 3
x = solver.IntVar(0, num_vals - 1, "x")
y = solver.IntVar(0, num_vals - 1, "y")
z = solver.IntVar(0, num_vals - 1, "z")
# Constraint 0: x != y.
solver.Add(x != y)
print("Number of constraints: ", solver.Constraints())
# Solve the problem.
decision_builder = solver.Phase(
[x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE
)
# Print solution on console.
count = 0
solver.NewSearch(decision_builder)
while solver.NextSolution():
count += 1
solution = f"Solution {count}:\n"
for var in [x, y, z]:
solution += f" {var.Name()} = {var.Value()}"
print(solution)
solver.EndSearch()
print(f"Number of solutions found: {count}")
print("Advanced usage:")
print(f"Problem solved in {solver.WallTime()}ms")
print(f"Memory usage: {pywrapcp.Solver.MemoryUsage()}bytes")
if __name__ == "__main__":
main()
C++
#include <ostream>
#include <string>
#include "ortools/constraint_solver/constraint_solver.h"
namespace operations_research {
void SimpleCpProgram() {
// Instantiate the solver.
Solver solver("CpSimple");
// Create the variables.
const int64_t num_vals = 3;
IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x");
IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y");
IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");
// Constraint 0: x != y..
solver.AddConstraint(solver.MakeAllDifferent({x, y}));
LOG(INFO) << "Number of constraints: "
<< std::to_string(solver.constraints());
// Solve the problem.
DecisionBuilder* const db = solver.MakePhase(
{x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
// Print solution on console.
int count = 0;
solver.NewSearch(db);
while (solver.NextSolution()) {
++count;
LOG(INFO) << "Solution " << count << ":" << std::endl
<< " x=" << x->Value() << " y=" << y->Value()
<< " z=" << z->Value();
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << solver.solutions();
LOG(INFO) << "Advanced usage:" << std::endl
<< "Problem solved in " << std::to_string(solver.wall_time())
<< "ms" << std::endl
<< "Memory usage: " << std::to_string(Solver::MemoryUsage())
<< "bytes";
}
} // namespace operations_research
int main(int /*argc*/, char* /*argv*/[]) {
operations_research::SimpleCpProgram();
return EXIT_SUCCESS;
}
Java
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;
import java.util.logging.Logger;
/** Simple CP Program.*/
public class SimpleCpProgram {
private SimpleCpProgram() {}
private static final Logger logger = Logger.getLogger(SimpleCpProgram.class.getName());
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Instantiate the solver.
Solver solver = new Solver("CpSimple");
// Create the variables.
final long numVals = 3;
final IntVar x = solver.makeIntVar(0, numVals - 1, "x");
final IntVar y = solver.makeIntVar(0, numVals - 1, "y");
final IntVar z = solver.makeIntVar(0, numVals - 1, "z");
// Constraint 0: x != y..
solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y}));
logger.info("Number of constraints: " + solver.constraints());
// Solve the problem.
final DecisionBuilder db = solver.makePhase(
new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
// Print solution on console.
int count = 0;
solver.newSearch(db);
while (solver.nextSolution()) {
++count;
logger.info(
String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value()));
}
solver.endSearch();
logger.info("Number of solutions found: " + solver.solutions());
logger.info(String.format("Advanced usage:\nProblem solved in %d ms\nMemory usage: %d bytes",
solver.wallTime(), Solver.memoryUsage()));
}
}
C#
using System;
using Google.OrTools.ConstraintSolver;
/// <summary>
/// This is a simple CP program.
/// </summary>
public class SimpleCpProgram
{
public static void Main(String[] args)
{
// Instantiate the solver.
Solver solver = new Solver("CpSimple");
// Create the variables.
const long numVals = 3;
IntVar x = solver.MakeIntVar(0, numVals - 1, "x");
IntVar y = solver.MakeIntVar(0, numVals - 1, "y");
IntVar z = solver.MakeIntVar(0, numVals - 1, "z");
// Constraint 0: x != y..
solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y }));
Console.WriteLine($"Number of constraints: {solver.Constraints()}");
// Solve the problem.
DecisionBuilder db =
solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
// Print solution on console.
int count = 0;
solver.NewSearch(db);
while (solver.NextSolution())
{
++count;
Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}");
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {solver.Solutions()}");
Console.WriteLine("Advanced usage:");
Console.WriteLine($"Problem solved in {solver.WallTime()}ms");
Console.WriteLine($"Memory usage: {Solver.MemoryUsage()}bytes");
}
}
決策製作工具
原始 CP 解題器的主要輸入內容是「決策建構工具」,其中包含問題的變數以及設定解題工具的選項。
上一節的程式碼範例會使用 Phase 方法建立決策建構工具 (對應 C++ 方法 MakePhase)。
「階段」一詞是指搜尋階段。在這個簡單的範例中,只有一個階段,但決策建構工具可以有多個階段,以便解題工具可在一個階段之間採用不同的搜尋策略。
Phase 方法有三個輸入參數:
vars:包含問題變數的陣列,在本例中為[x, y, z]。IntVarStrategy:選擇下一個未繫結變數以指派值的規則。這裡的程式碼使用預設的CHOOSE_FIRST_UNBOUND,也就是說,解題器在每個步驟中,都會按照傳遞至Phase方法的變數陣列中的第一個未繫結變數的順序選取第一個未繫結變數。IntValueStrategy:選擇要指派給變數的下一個值的規則。這裡的程式碼使用預設的ASSIGN_MIN_VALUE,這會選取尚未用於變數的最小值。這會以遞增順序指派值。另一個選項是ASSIGN_MAX_VALUE,在此情況下,解題工具會以遞減順序指派值。