In diesem Abschnitt wird erläutert, wie Sie Probleme bei der Weiterleitung beheben, die nicht durchführbar sind. Lösung zu finden. Wenn Sie zum Beispiel eine VRP mit Kapazitätseinschränkungen bei denen die Gesamtnachfrage an allen Standorten die Gesamtkapazität des ist keine Lösung möglich. In solchen Fällen müssen die Fahrzeuge bestimmte Orte aufsuchen. Das Problem ist, wie Sie entscheiden, welche Besuche zurückgegangen werden sollen.
Um das Problem zu lösen, führen wir neue Kosten ein – die sogenannten Strafen. – an allen Standorten. Wenn ein Besuch eines Geschäfts unterbrochen wird, zur insgesamt zurückgelegten Strecke addiert. Der Matherechner findet dann eine Route, minimiert die Gesamtstrecke plus die Summe der Strafen für alle gelassenen Strafen Standorte.
Betrachten Sie als Beispiel das einfache VRP mit Kapazitätsbeschränkungen, die durch das Diagramm unten dargestellt, in dem die Zahlen neben den drei Standorten (mit Ausnahme der Depot) sind Nachfragen.
Angenommen, es gibt nur ein Fahrzeug mit 50 Plätzen. Es können nicht alle drei
die Standorte A, B und C, da die Gesamtnachfrage bei 60 liegt. Um das Problem zu lösen,
wird jedem Standort eine hohe Strafe von beispielsweise 100 zugewiesen. Nachher
erkennt der Rechner, dass das Problem
nicht umsetzbar ist, verwirft er Position B.
gibt die folgende Route zurück: Depot -> A -> C -> Depot
Dies ist die kürzeste Route, über die zwei der drei Orte erreicht werden (die Entfernung ist 55).
Strafgrößen
Im obigen Beispiel haben wir Strafen ausgewählt, die größer sind als die Summe Entfernungen zwischen Standorten (mit Ausnahme des Depots) Dies hat zur Folge, dass um das Problem zu lösen, lässt der Rechner keine zusätzlichen Standorten hinzuzufügen, da die Strafen dafür länger dauern kürzere Fahrstrecke.
Wenn ihr so viele Lieferungen wie möglich durchführen möchtet, zufriedenstellende Lösung des Problems.
Wenn Sie nicht so viele Lieferungen wie möglich durchführen müssen, kleinere Strafen, in denen der Matherechner mehr Standorte vergibt als notwendig ist, um das Problem machbar zu machen. Das ist z. B. dann der Fall, wenn zusätzlich zu den Kosten für den Besuch bestimmter Standorte.
Beispiel
Als Nächstes stellen wir ein größeres Beispiel für ein VRP vor, das mit Strafen gelöst werden kann. Das Beispiel ähnelt dem vorherigen Beispiel CVRP, aber dieses Mal haben wir und zwingt einige Fahrzeuge zum Ausbleiben der Ladenbesuche.
Unten sehen Sie eine Grafik mit Standorten und neuen Nachfragen.
Lösung des Beispiels mit OR-Tools
In den folgenden Abschnitten wird erläutert, wie Sie das Beispiel mit OR-Tools lösen.
Daten erstellen
Die Daten für dieses Beispiel umfassen die Daten der vorherigen Beispiel für VRP mit den folgenden Anforderungen und Kapazitäten:
Python
data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15]
C++
const std::vector<int64_t> demands{ 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
Java
public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15};
C#
public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 };
Fügen Sie die Kapazitätseinschränkungen und Strafen hinzu
Der folgende Code fügt die Nachfragerückruf- und Kapazitätseinschränkungen hinzu und fügt
Strafen mithilfe der
AddDisjunction
.
Python
def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", ) # Allow to drop nodes. penalty = 1000 for node in range(1, len(data["distance_matrix"])): routing.AddDisjunction([manager.NodeToIndex(node)], penalty)
C++
const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. int64_t penalty{1000}; for (int i = 1; i < data.distance_matrix.size(); ++i) { routing.AddDisjunction( {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty); }
Java
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. long penalty = 1000; for (int i = 1; i < data.distanceMatrix.length; ++i) { routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty); }
C#
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. long penalty = 1000; for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i) { routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty); }
Eine Disjunktion ist in diesem Zusammenhang einfach eine Variable, die der Matherechner verwendet. um zu entscheiden, ob ein bestimmter Standort in die Lösung aufgenommen werden soll. In diesem Beispiel hat der Parameter wird jedem Standort dieselbe Strafe hinzugefügt. Grundsätzlich können Sie verschiedene Strafen an verschiedene Orte.
Lösungsdrucker hinzufügen
Der unten gezeigte Lösungsdrucker ähnelt dem Drucker im Beispiel für eine CVRP-Richtlinie, es werden aber auch die entfernte Standorte.
Python
def print_solution(data, manager, routing, assignment): """Prints assignment on console.""" print(f"Objective: {assignment.ObjectiveValue()}") # Display dropped nodes. dropped_nodes = "Dropped nodes:" for node in range(routing.Size()): if routing.IsStart(node) or routing.IsEnd(node): continue if assignment.Value(routing.NextVar(node)) == node: dropped_nodes += f" {manager.IndexToNode(node)}" print(dropped_nodes) # Display routes total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = assignment.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total Distance of all routes: {total_distance}m") print(f"Total Load of all routes: {total_load}")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { // Display dropped nodes. std::ostringstream dropped_nodes; for (int64_t node = 0; node < routing.Size(); ++node) { if (routing.IsStart(node) || routing.IsEnd(node)) continue; if (solution.Value(routing.NextVar(node)) == node) { dropped_nodes << " " << manager.IndexToNode(node).value(); } } LOG(INFO) << "Dropped nodes:" << dropped_nodes.str(); // Display routes int64_t total_distance{0}; int64_t total_load{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; int64_t route_load{0}; std::ostringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. // Display dropped nodes. String droppedNodes = "Dropped nodes:"; for (int node = 0; node < routing.size(); ++node) { if (routing.isStart(node) || routing.isEnd(node)) { continue; } if (solution.value(routing.nextVar(node)) == node) { droppedNodes += " " + manager.indexToNode(node); } } logger.info(droppedNodes); // Display routes long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total Distance of all routes: " + totalDistance + "m"); logger.info("Total Load of all routes: " + totalLoad); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. // Display dropped nodes. string droppedNodes = "Dropped nodes:"; for (int index = 0; index < routing.Size(); ++index) { if (routing.IsStart(index) || routing.IsEnd(index)) { continue; } if (solution.Value(routing.NextVar(index)) == index) { droppedNodes += " " + manager.IndexToNode(index); } } Console.WriteLine("{0}", droppedNodes); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total Distance of all routes: {0}m", totalDistance); Console.WriteLine("Total Load of all routes: {0}m", totalLoad); }
Programm ausführen
Wenn Sie das Programm ausführen, wird die folgende Ausgabe zurückgegeben. Beachten Sie, dass legt der Matherechner die Positionen 6 und 15 ab.
Objective: 7936 Dropped nodes: 6 15 Route for vehicle 0: 0 Load(0) -> 9 Load(1) -> 14 Load(7) -> 16 Load(15) -> 0 Load(15) Distance of the route: 1324m Load of the route: 15 Route for vehicle 1: 0 Load(0) -> 12 Load(2) -> 11 Load(3) -> 4 Load(9) -> 3 Load(12) -> 1 Load(13) -> 0 Load(13) Distance of the route: 1872m Load of the route: 13 Route for vehicle 2: 0 Load(0) -> 7 Load(8) -> 13 Load(14) -> 0 Load(14) Distance of the route: 868m Load of the route: 14 Route for vehicle 3: 0 Load(0) -> 8 Load(8) -> 10 Load(10) -> 2 Load(11) -> 5 Load(14) -> 0 Load(14) Distance of the route: 1872m Load of the route: 14 Total Distance of all routes: 5936m Total Load of all routes: 56
Hier ist ein Diagramm der Routen.
Programme abschließen
Hier sind die vollständigen Programme.
Python
"""Capacited Vehicles Routing Problem (CVRP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, assignment): """Prints assignment on console.""" print(f"Objective: {assignment.ObjectiveValue()}") # Display dropped nodes. dropped_nodes = "Dropped nodes:" for node in range(routing.Size()): if routing.IsStart(node) or routing.IsEnd(node): continue if assignment.Value(routing.NextVar(node)) == node: dropped_nodes += f" {manager.IndexToNode(node)}" print(dropped_nodes) # Display routes total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = assignment.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total Distance of all routes: {total_distance}m") print(f"Total Load of all routes: {total_load}") def main(): """Solve the CVRP problem.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Capacity constraint. def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", ) # Allow to drop nodes. penalty = 1000 for node in range(1, len(data["distance_matrix"])): routing.AddDisjunction([manager.NodeToIndex(node)], penalty) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) search_parameters.local_search_metaheuristic = ( routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH ) search_parameters.time_limit.FromSeconds(1) # Solve the problem. assignment = routing.SolveWithParameters(search_parameters) # Print solution on console. if assignment: print_solution(data, manager, routing, assignment) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <vector> #include "google/protobuf/duration.pb.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<int64_t> demands{ 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15}; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { // Display dropped nodes. std::ostringstream dropped_nodes; for (int64_t node = 0; node < routing.Size(); ++node) { if (routing.IsStart(node) || routing.IsEnd(node)) continue; if (solution.Value(routing.NextVar(node)) == node) { dropped_nodes << " " << manager.IndexToNode(node).value(); } } LOG(INFO) << "Dropped nodes:" << dropped_nodes.str(); // Display routes int64_t total_distance{0}; int64_t total_load{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; int64_t route_load{0}; std::ostringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpDropNodes() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Capacity constraint. const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. int64_t penalty{1000}; for (int i = 1; i < data.distance_matrix.size(); ++i) { routing.AddDisjunction( {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty); } // Setting first solution heuristic. RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters(); search_parameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); search_parameters.set_local_search_metaheuristic( LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH); search_parameters.mutable_time_limit()->set_seconds(1); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(search_parameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpDropNodes(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.LocalSearchMetaheuristic; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import com.google.protobuf.Duration; import java.util.logging.Logger; /** Minimal VRP.*/ public class VrpDropNodes { private static final Logger logger = Logger.getLogger(VrpDropNodes.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15}; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. // Display dropped nodes. String droppedNodes = "Dropped nodes:"; for (int node = 0; node < routing.size(); ++node) { if (routing.isStart(node) || routing.isEnd(node)) { continue; } if (solution.value(routing.nextVar(node)) == node) { droppedNodes += " " + manager.indexToNode(node); } } logger.info(droppedNodes); // Display routes long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total Distance of all routes: " + totalDistance + "m"); logger.info("Total Load of all routes: " + totalLoad); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. long penalty = 1000; for (int i = 1; i < data.distanceMatrix.length; ++i) { routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH) .setTimeLimit(Duration.newBuilder().setSeconds(1).build()) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; using Google.Protobuf.WellKnownTypes; // Duration /// <summary> /// Minimal Vrp with drop nodes. /// </summary> public class VrpDropNodes { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. // Display dropped nodes. string droppedNodes = "Dropped nodes:"; for (int index = 0; index < routing.Size(); ++index) { if (routing.IsStart(index) || routing.IsEnd(index)) { continue; } if (solution.Value(routing.NextVar(index)) == index) { droppedNodes += " " + manager.IndexToNode(index); } } Console.WriteLine("{0}", droppedNodes); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total Distance of all routes: {0}m", totalDistance); Console.WriteLine("Total Load of all routes: {0}m", totalLoad); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Allow to drop nodes. long penalty = 1000; for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i) { routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch; searchParameters.TimeLimit = new Duration { Seconds = 1 }; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }