Cezalar ve Düşülen Ziyaretler

Bu bölümde, mümkün olmayan yönlendirme sorunlarının nasıl giderileceği açıklanmaktadır. sebep olabilir. Örneğin, size bir Kapasite kısıtlamalarıyla VRP Bu durumda, tüm konumlardaki toplam talep, müşterinin toplam için hiçbir çözüm mümkün değil. Böyle durumlarda araçların bazı yerlere yapılan ziyaretleri bırakması gerekir. Sorun, Hangi ziyaretlerin düşeceğine nasıl karar vereceğinizi öğrenin.

Sorunu çözmek için ceza adı verilen yeni maliyetler sunuyoruz. ...ve tüm konumlarda görünür. Bir konuma yapılan ziyaret iptal edildiğinde ceza, katedilen toplam mesafeye eklenir. Çözme aracı, daha sonra toplam mesafeyi ve çıkarılan tüm cezaların toplamını en aza indirir yerler.

Örneğin, sayıların yer aldığı, üç konumun (diğer adıyla yerine) taleptir.

50 kapasitesi olan sadece bir araç olduğunu varsayalım. Üçünü de ziyaret edemez A, B ve C yer alır. Çünkü toplam talep 60'tır. Sorunu çözmek için her konuma büyük bir ceza (ör. 100) atarsınız. Şu tarihten sonra: problemin uygulanabilir olmadığını tespit ettiğinde çözücü, B konumunu bırakır ve şu rotayı döndürür: Depot -> A -> C -> Depot

Bu, üç konumdan ikisini (mesafe) ziyaret eden en kısa rotadır 55'tir).

Ceza bedenleri

Yukarıdaki örnekte, tüm cezaların toplamından daha büyük olan cezalar seçtik. yerler arasındaki mesafeler (depo hariç). Sonuç olarak, abonelikten çıktıktan sonra tek bir yerde toplanmış olur, çözücü hiçbir zaman ek yerler bulunur, çünkü bunun cezası daha fazla ve seyahat mesafesinde azalma.

Mümkün olduğunca çok sayıda teslimat yapmak istediğinizi varsayarsak tatmin edici bir çözüm bulur.

Olabildiğince çok sayıda teslimat yapmanız gerekmiyorsa daha küçük cezalar verin; bu durumda çözücü, problemi uygulanabilir kılmak için gereklidir. Örneğin, şunları yapabilirsiniz: belirli bir ziyaretin maliyetinin üzerinde ek masraflar vardır. yerler.

Örnek

Ardından, cezalar kullanılarak çözülebilecek bir VRP'nin daha büyük bir örneğini sunacağız. Örnek, öncekine benzer CVRP örneği ama bu defa bazı Bu nedenle, bazı araçları ziyaret etmekte zorlanıyorlar.

Aşağıda konumların ve yeni taleplerin grafiği verilmiştir.

OR-Araçları ile örneği çözme

Aşağıdaki bölümlerde, örneğin OR-Araçları ile nasıl çözüleceği açıklanmaktadır.

Verileri oluşturma

Bu örnekteki veriler, önceki VRP örneği ve aşağıdaki talepleri ekler ve kapasiteler:

Python

    data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8]
    data["vehicle_capacities"] = [15, 15, 15, 15]

C++

  const std::vector<int64_t> demands{
      0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8,
  };
  const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};

Java

    public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8};
    public final long[] vehicleCapacities = {15, 15, 15, 15};

C#

        public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 };
        public long[] VehicleCapacities = { 15, 15, 15, 15 };

Kapasite kısıtlamalarını ve cezaları ekleyin

Aşağıdaki kod, talep geri çağırması ile kapasite kısıtlamalarını ve cezaları AddDisjunction yöntemidir.

Python

    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data["demands"][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data["vehicle_capacities"],  # vehicle maximum capacities
        True,  # start cumul to zero
        "Capacity",
    )
    # Allow to drop nodes.
    penalty = 1000
    for node in range(1, len(data["distance_matrix"])):
        routing.AddDisjunction([manager.NodeToIndex(node)], penalty)

C++

  const int demand_callback_index = routing.RegisterUnaryTransitCallback(
      [&data, &manager](const int64_t from_index) -> int64_t {
        // Convert from routing variable Index to demand NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        return data.demands[from_node];
      });
  routing.AddDimensionWithVehicleCapacity(
      demand_callback_index,    // transit callback index
      int64_t{0},               // null capacity slack
      data.vehicle_capacities,  // vehicle maximum capacities
      true,                     // start cumul to zero
      "Capacity");
  // Allow to drop nodes.
  int64_t penalty{1000};
  for (int i = 1; i < data.distance_matrix.size(); ++i) {
    routing.AddDisjunction(
        {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty);
  }

Java

    final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      return data.demands[fromNode];
    });
    routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
        data.vehicleCapacities, // vehicle maximum capacities
        true, // start cumul to zero
        "Capacity");
    // Allow to drop nodes.
    long penalty = 1000;
    for (int i = 1; i < data.distanceMatrix.length; ++i) {
      routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty);
    }

C#

        int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                                       {
                                                                           // Convert from routing variable Index to
                                                                           // demand NodeIndex.
                                                                           var fromNode =
                                                                               manager.IndexToNode(fromIndex);
                                                                           return data.Demands[fromNode];
                                                                       });
        routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                                data.VehicleCapacities, // vehicle maximum capacities
                                                true,                   // start cumul to zero
                                                "Capacity");
        // Allow to drop nodes.
        long penalty = 1000;
        for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i)
        {
            routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty);
        }

Bu bağlamda ayırma, çözücünün problemi çözmek için kullandığı bir değişkendir. belirli bir konumun çözüme dahil edilip edilmeyeceğini belirler. Bu örnekte yöntemi her konuma aynı cezayı ekler ancak genel olarak farklı cezalar uygulanır.

Çözüm yazıcısını ekleyin

Aşağıda gösterilen çözüm yazıcısı, CVRP örneği ancak aynı zamanda atlanan konumlar.

Python

def print_solution(data, manager, routing, assignment):
    """Prints assignment on console."""
    print(f"Objective: {assignment.ObjectiveValue()}")
    # Display dropped nodes.
    dropped_nodes = "Dropped nodes:"
    for node in range(routing.Size()):
        if routing.IsStart(node) or routing.IsEnd(node):
            continue
        if assignment.Value(routing.NextVar(node)) == node:
            dropped_nodes += f" {manager.IndexToNode(node)}"
    print(dropped_nodes)
    # Display routes
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total Distance of all routes: {total_distance}m")
    print(f"Total Load of all routes: {total_load}")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Display dropped nodes.
  std::ostringstream dropped_nodes;
  for (int64_t node = 0; node < routing.Size(); ++node) {
    if (routing.IsStart(node) || routing.IsEnd(node)) continue;
    if (solution.Value(routing.NextVar(node)) == node) {
      dropped_nodes << " " << manager.IndexToNode(node).value();
    }
  }
  LOG(INFO) << "Dropped nodes:" << dropped_nodes.str();
  // Display routes
  int64_t total_distance{0};
  int64_t total_load{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    int64_t route_load{0};
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    // Display dropped nodes.
    String droppedNodes = "Dropped nodes:";
    for (int node = 0; node < routing.size(); ++node) {
      if (routing.isStart(node) || routing.isEnd(node)) {
        continue;
      }
      if (solution.value(routing.nextVar(node)) == node) {
        droppedNodes += " " + manager.indexToNode(node);
      }
    }
    logger.info(droppedNodes);
    // Display routes
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      long routeLoad = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        long nodeIndex = manager.indexToNode(index);
        routeLoad += data.demands[(int) nodeIndex];
        route += nodeIndex + " Load(" + routeLoad + ") -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      route += manager.indexToNode(routing.end(i));
      logger.info(route);
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
      totalLoad += routeLoad;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
    logger.info("Total Load of all routes: " + totalLoad);
  }

C#

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        // Display dropped nodes.
        string droppedNodes = "Dropped nodes:";
        for (int index = 0; index < routing.Size(); ++index)
        {
            if (routing.IsStart(index) || routing.IsEnd(index))
            {
                continue;
            }
            if (solution.Value(routing.NextVar(index)) == index)
            {
                droppedNodes += " " + manager.IndexToNode(index);
            }
        }
        Console.WriteLine("{0}", droppedNodes);
        // Inspect solution.
        long totalDistance = 0;
        long totalLoad = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            long routeLoad = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                long nodeIndex = manager.IndexToNode(index);
                routeLoad += data.Demands[nodeIndex];
                Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
            totalLoad += routeLoad;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
        Console.WriteLine("Total Load of all routes: {0}m", totalLoad);
    }

Programı çalıştırma

Programı çalıştırdığınızda, aşağıda gösterilen aşağıdaki çıkışı döndürür. Lütfen çözücü 6 ve 15. konumları bırakır.

Objective: 7936
Dropped nodes: 6 15
Route for vehicle 0:
 0 Load(0) ->  9 Load(1) ->  14 Load(7) ->  16 Load(15) ->  0 Load(15)
Distance of the route: 1324m
Load of the route: 15

Route for vehicle 1:
 0 Load(0) ->  12 Load(2) ->  11 Load(3) ->  4 Load(9) ->  3 Load(12) ->  1 Load(13) ->  0 Load(13)
Distance of the route: 1872m
Load of the route: 13

Route for vehicle 2:
 0 Load(0) ->  7 Load(8) ->  13 Load(14) ->  0 Load(14)
Distance of the route: 868m
Load of the route: 14

Route for vehicle 3:
 0 Load(0) ->  8 Load(8) ->  10 Load(10) ->  2 Load(11) ->  5 Load(14) ->  0 Load(14)
Distance of the route: 1872m
Load of the route: 14

Total Distance of all routes: 5936m
Total Load of all routes: 56

Rota şemasını aşağıda bulabilirsiniz.

Programları tamamlama

Programların tamamını burada bulabilirsiniz.

Python

"""Capacited Vehicles Routing Problem (CVRP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8]
    data["vehicle_capacities"] = [15, 15, 15, 15]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, assignment):
    """Prints assignment on console."""
    print(f"Objective: {assignment.ObjectiveValue()}")
    # Display dropped nodes.
    dropped_nodes = "Dropped nodes:"
    for node in range(routing.Size()):
        if routing.IsStart(node) or routing.IsEnd(node):
            continue
        if assignment.Value(routing.NextVar(node)) == node:
            dropped_nodes += f" {manager.IndexToNode(node)}"
    print(dropped_nodes)
    # Display routes
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total Distance of all routes: {total_distance}m")
    print(f"Total Load of all routes: {total_load}")


def main():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Capacity constraint.
    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data["demands"][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data["vehicle_capacities"],  # vehicle maximum capacities
        True,  # start cumul to zero
        "Capacity",
    )
    # Allow to drop nodes.
    penalty = 1000
    for node in range(1, len(data["distance_matrix"])):
        routing.AddDisjunction([manager.NodeToIndex(node)], penalty)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )
    search_parameters.local_search_metaheuristic = (
        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
    )
    search_parameters.time_limit.FromSeconds(1)

    # Solve the problem.
    assignment = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if assignment:
        print_solution(data, manager, routing, assignment)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <vector>

#include "google/protobuf/duration.pb.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<int64_t> demands{
      0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8,
  };
  const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Display dropped nodes.
  std::ostringstream dropped_nodes;
  for (int64_t node = 0; node < routing.Size(); ++node) {
    if (routing.IsStart(node) || routing.IsEnd(node)) continue;
    if (solution.Value(routing.NextVar(node)) == node) {
      dropped_nodes << " " << manager.IndexToNode(node).value();
    }
  }
  LOG(INFO) << "Dropped nodes:" << dropped_nodes.str();
  // Display routes
  int64_t total_distance{0};
  int64_t total_load{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    int64_t route_load{0};
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpDropNodes() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Capacity constraint.
  const int demand_callback_index = routing.RegisterUnaryTransitCallback(
      [&data, &manager](const int64_t from_index) -> int64_t {
        // Convert from routing variable Index to demand NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        return data.demands[from_node];
      });
  routing.AddDimensionWithVehicleCapacity(
      demand_callback_index,    // transit callback index
      int64_t{0},               // null capacity slack
      data.vehicle_capacities,  // vehicle maximum capacities
      true,                     // start cumul to zero
      "Capacity");
  // Allow to drop nodes.
  int64_t penalty{1000};
  for (int i = 1; i < data.distance_matrix.size(); ++i) {
    routing.AddDisjunction(
        {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty);
  }

  // Setting first solution heuristic.
  RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters();
  search_parameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  search_parameters.set_local_search_metaheuristic(
      LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
  search_parameters.mutable_time_limit()->set_seconds(1);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(search_parameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpDropNodes();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.LocalSearchMetaheuristic;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import com.google.protobuf.Duration;
import java.util.logging.Logger;

/** Minimal VRP.*/
public class VrpDropNodes {
  private static final Logger logger = Logger.getLogger(VrpDropNodes.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8};
    public final long[] vehicleCapacities = {15, 15, 15, 15};
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    // Display dropped nodes.
    String droppedNodes = "Dropped nodes:";
    for (int node = 0; node < routing.size(); ++node) {
      if (routing.isStart(node) || routing.isEnd(node)) {
        continue;
      }
      if (solution.value(routing.nextVar(node)) == node) {
        droppedNodes += " " + manager.indexToNode(node);
      }
    }
    logger.info(droppedNodes);
    // Display routes
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      long routeLoad = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        long nodeIndex = manager.indexToNode(index);
        routeLoad += data.demands[(int) nodeIndex];
        route += nodeIndex + " Load(" + routeLoad + ") -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      route += manager.indexToNode(routing.end(i));
      logger.info(route);
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
      totalLoad += routeLoad;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
    logger.info("Total Load of all routes: " + totalLoad);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Capacity constraint.
    final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      return data.demands[fromNode];
    });
    routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
        data.vehicleCapacities, // vehicle maximum capacities
        true, // start cumul to zero
        "Capacity");
    // Allow to drop nodes.
    long penalty = 1000;
    for (int i = 1; i < data.distanceMatrix.length; ++i) {
      routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty);
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
            .setTimeLimit(Duration.newBuilder().setSeconds(1).build())
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using Google.Protobuf.WellKnownTypes; // Duration

/// <summary>
///   Minimal Vrp with drop nodes.
/// </summary>
public class VrpDropNodes
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 };
        public long[] VehicleCapacities = { 15, 15, 15, 15 };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        // Display dropped nodes.
        string droppedNodes = "Dropped nodes:";
        for (int index = 0; index < routing.Size(); ++index)
        {
            if (routing.IsStart(index) || routing.IsEnd(index))
            {
                continue;
            }
            if (solution.Value(routing.NextVar(index)) == index)
            {
                droppedNodes += " " + manager.IndexToNode(index);
            }
        }
        Console.WriteLine("{0}", droppedNodes);
        // Inspect solution.
        long totalDistance = 0;
        long totalLoad = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            long routeLoad = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                long nodeIndex = manager.IndexToNode(index);
                routeLoad += data.Demands[nodeIndex];
                Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
            totalLoad += routeLoad;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
        Console.WriteLine("Total Load of all routes: {0}m", totalLoad);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Capacity constraint.
        int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                                       {
                                                                           // Convert from routing variable Index to
                                                                           // demand NodeIndex.
                                                                           var fromNode =
                                                                               manager.IndexToNode(fromIndex);
                                                                           return data.Demands[fromNode];
                                                                       });
        routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                                data.VehicleCapacities, // vehicle maximum capacities
                                                true,                   // start cumul to zero
                                                "Capacity");
        // Allow to drop nodes.
        long penalty = 1000;
        for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i)
        {
            routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty);
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
        searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
        searchParameters.TimeLimit = new Duration { Seconds = 1 };

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}