Dans cette section, nous décrivons un VRP, dans lequel chaque véhicule récupère des objets différents endroits et les dépose ailleurs. Le problème est d'attribuer des routes pour que les véhicules puissent récupérer et livrer tous les articles, tout en réduisant de l'itinéraire le plus long.
Exemple de VRP avec retraits et livraisons
Le schéma ci-dessous montre les lieux de retrait et de livraison sur une grille similaire à celui de l'exemple de VRP précédent. Pour chaque l'article, le point de départ est dirigé entre le lieu de retrait et le lieu de livraison.
Résoudre l'exemple avec OR-Tools
Les sections suivantes décrivent comment résoudre le VRP avec les retraits et les livraisons pour en savoir plus. Une grande partie du code est empruntée au exemple VRP précédent. se concentrer sur les parties qui sont nouvelles.
Créer les données
Les données pour le problème incluent la matrice des distances du VRP précédent
ainsi qu'une liste de paires
de lieux de retrait et de livraison,
data['pickups_deliveries']
, correspondant aux arêtes orientées sur le schéma
ci-dessus. Le code ci-dessous définit les lieux de retrait et de livraison.
Python
data["pickups_deliveries"] = [ [1, 6], [2, 10], [4, 3], [5, 9], [7, 8], [15, 11], [13, 12], [16, 14], ]
C++
const std::vector<std::vector<RoutingIndexManager::NodeIndex>> pickups_deliveries{ {RoutingIndexManager::NodeIndex{1}, RoutingIndexManager::NodeIndex{6}}, {RoutingIndexManager::NodeIndex{2}, RoutingIndexManager::NodeIndex{10}}, {RoutingIndexManager::NodeIndex{4}, RoutingIndexManager::NodeIndex{3}}, {RoutingIndexManager::NodeIndex{5}, RoutingIndexManager::NodeIndex{9}}, {RoutingIndexManager::NodeIndex{7}, RoutingIndexManager::NodeIndex{8}}, {RoutingIndexManager::NodeIndex{15}, RoutingIndexManager::NodeIndex{11}}, {RoutingIndexManager::NodeIndex{13}, RoutingIndexManager::NodeIndex{12}}, {RoutingIndexManager::NodeIndex{16}, RoutingIndexManager::NodeIndex{14}}, };
Java
public final int[][] pickupsDeliveries = { {1, 6}, {2, 10}, {4, 3}, {5, 9}, {7, 8}, {15, 11}, {13, 12}, {16, 14}, };
C#
public int[][] PickupsDeliveries = { new int[] { 1, 6 }, new int[] { 2, 10 }, new int[] { 4, 3 }, new int[] { 5, 9 }, new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 }, };
Pour chaque paire, la première entrée correspond à l'index du lieu de prise en charge, et la seconde correspond à l'index du lieu de livraison.
Définir les demandes de retrait et de livraison
Le code suivant définit les demandes de retrait et de livraison, à l'aide des commandes
lieux de livraison à data['pickups_deliveries']
.
Python
for request in data["pickups_deliveries"]: pickup_index = manager.NodeToIndex(request[0]) delivery_index = manager.NodeToIndex(request[1]) routing.AddPickupAndDelivery(pickup_index, delivery_index) routing.solver().Add( routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index) ) routing.solver().Add( distance_dimension.CumulVar(pickup_index) <= distance_dimension.CumulVar(delivery_index) )
C++
Solver* const solver = routing.solver(); for (const auto& request : data.pickups_deliveries) { const int64_t pickup_index = manager.NodeToIndex(request[0]); const int64_t delivery_index = manager.NodeToIndex(request[1]); routing.AddPickupAndDelivery(pickup_index, delivery_index); solver->AddConstraint(solver->MakeEquality( routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index))); solver->AddConstraint( solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index), distance_dimension->CumulVar(delivery_index))); }
Java
Solver solver = routing.solver(); for (int[] request : data.pickupsDeliveries) { long pickupIndex = manager.nodeToIndex(request[0]); long deliveryIndex = manager.nodeToIndex(request[1]); routing.addPickupAndDelivery(pickupIndex, deliveryIndex); solver.addConstraint( solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex))); solver.addConstraint(solver.makeLessOrEqual( distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex))); }
C#
Solver solver = routing.solver(); for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++) { long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]); long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]); routing.AddPickupAndDelivery(pickupIndex, deliveryIndex); solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex))); solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex), distanceDimension.CumulVar(deliveryIndex))); }
Pour chaque paire, la commande
routing.AddPickupAndDelivery(pickup_index, delivery_index)
crée un retrait
et de livraison d'un article.
La ligne suivante ajoute l'exigence selon laquelle chaque article doit être retiré et livrés par le même véhicule.
routing.solver().Add( routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index))
Enfin, nous ajoutons l'exigence évidente que chaque article doit être retiré avant de les livrer. Pour ce faire, nous exigeons que la distance cumulée d'un véhicule au lieu de retrait d'un article ; correspond à la distance maximale cumulée du lieu de livraison.
routing.solver().Add( distance_dimension.CumulVar(pickup_index) <= distance_dimension.CumulVar(delivery_index))
Exécution du programme
Les programmes complets du VRP avec retraits et livraisons sont présentés dans la section suivante. Lorsque vous exécutez le programme, il affiche les routes suivantes.
Objective: 226116 Route for vehicle 0: 0 -> 13 -> 15 -> 11 -> 12 -> 0 Distance of the route: 1552m Route for vehicle 1: 0 -> 5 -> 2 -> 10 -> 16 -> 14 -> 9 -> 0 Distance of the route: 2192m Route for vehicle 2: 0 -> 4 -> 3 -> 0 Distance of the route: 1392m Route for vehicle 3: 0 -> 7 -> 1 -> 6 -> 8 -> 0 Distance of the route: 1780m Total Distance of all routes: 6916m
Le schéma suivant illustre les routes:
Terminer les programmes
Les programmes complets sont présentés ci-dessous.
Python
"""Simple Pickup Delivery Problem (PDP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["pickups_deliveries"] = [ [1, 6], [2, 10], [4, 3], [5, 9], [7, 8], [15, 11], [13, 12], [16, 14], ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) total_distance += route_distance print(f"Total Distance of all routes: {total_distance}m") def main(): """Entry point of the program.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Define cost of each arc. def distance_callback(from_index, to_index): """Returns the manhattan distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Distance constraint. dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100) # Define Transportation Requests. for request in data["pickups_deliveries"]: pickup_index = manager.NodeToIndex(request[0]) delivery_index = manager.NodeToIndex(request[1]) routing.AddPickupAndDelivery(pickup_index, delivery_index) routing.solver().Add( routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index) ) routing.solver().Add( distance_dimension.CumulVar(pickup_index) <= distance_dimension.CumulVar(delivery_index) ) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<std::vector<RoutingIndexManager::NodeIndex>> pickups_deliveries{ {RoutingIndexManager::NodeIndex{1}, RoutingIndexManager::NodeIndex{6}}, {RoutingIndexManager::NodeIndex{2}, RoutingIndexManager::NodeIndex{10}}, {RoutingIndexManager::NodeIndex{4}, RoutingIndexManager::NodeIndex{3}}, {RoutingIndexManager::NodeIndex{5}, RoutingIndexManager::NodeIndex{9}}, {RoutingIndexManager::NodeIndex{7}, RoutingIndexManager::NodeIndex{8}}, {RoutingIndexManager::NodeIndex{15}, RoutingIndexManager::NodeIndex{11}}, {RoutingIndexManager::NodeIndex{13}, RoutingIndexManager::NodeIndex{12}}, {RoutingIndexManager::NodeIndex{16}, RoutingIndexManager::NodeIndex{14}}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; total_distance += route_distance; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpGlobalSpan() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Define cost of each arc. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Distance constraint. routing.AddDimension(transit_callback_index, // transit callback 0, // no slack 3000, // vehicle maximum travel distance true, // start cumul to zero "Distance"); RoutingDimension* distance_dimension = routing.GetMutableDimension("Distance"); distance_dimension->SetGlobalSpanCostCoefficient(100); // Define Transportation Requests. Solver* const solver = routing.solver(); for (const auto& request : data.pickups_deliveries) { const int64_t pickup_index = manager.NodeToIndex(request[0]); const int64_t delivery_index = manager.NodeToIndex(request[1]); routing.AddPickupAndDelivery(pickup_index, delivery_index); solver->AddConstraint(solver->MakeEquality( routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index))); solver->AddConstraint( solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index), distance_dimension->CumulVar(delivery_index))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpGlobalSpan(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.Solver; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** Minimal Pickup & Delivery Problem (PDP).*/ public class VrpPickupDelivery { private static final Logger logger = Logger.getLogger(VrpPickupDelivery.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int[][] pickupsDeliveries = { {1, 6}, {2, 10}, {4, 3}, {5, 9}, {7, 8}, {15, 11}, {13, 12}, {16, 14}, }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; } logger.info("Total Distance of all routes: " + totalDistance + "m"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.addDimension(transitCallbackIndex, // transit callback index 0, // no slack 3000, // vehicle maximum travel distance true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100); // Define Transportation Requests. Solver solver = routing.solver(); for (int[] request : data.pickupsDeliveries) { long pickupIndex = manager.nodeToIndex(request[0]); long deliveryIndex = manager.nodeToIndex(request[1]); routing.addPickupAndDelivery(pickupIndex, deliveryIndex); solver.addConstraint( solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex))); solver.addConstraint(solver.makeLessOrEqual( distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PARALLEL_CHEAPEST_INSERTION) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Minimal Pickup & Delivery Problem (PDP). /// </summary> public class VrpPickupDelivery { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int[][] PickupsDeliveries = { new int[] { 1, 6 }, new int[] { 2, 10 }, new int[] { 4, 3 }, new int[] { 5, 9 }, new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 }, }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; } Console.WriteLine("Total Distance of all routes: {0}m", totalDistance); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100); // Define Transportation Requests. Solver solver = routing.solver(); for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++) { long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]); long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]); routing.AddPickupAndDelivery(pickupIndex, deliveryIndex); solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex))); solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex), distanceDimension.CumulVar(deliveryIndex))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }