Маршрутизация транспортных средств с получением и доставкой

В этом разделе мы описываем VRP, в котором каждое транспортное средство забирает предметы в разных местах и ​​выгружает их в других. Проблема состоит в том, чтобы назначить маршруты для транспортных средств, чтобы они могли забрать и доставить все предметы, минимизируя при этом длину самого длинного маршрута.

Пример VRP с самовывозом и доставкой

На диаграмме ниже показаны места получения и доставки в сетке, аналогичной той, что была в предыдущем примере VRP . Для каждого товара существует направленная грань от места самовывоза к месту доставки.

Решение примера с помощью OR-Tools

В следующих разделах описано, как решить проблему VRP с самовывозом и доставкой. Большая часть кода заимствована из предыдущего примера VRP , поэтому мы сосредоточимся на новых частях.

Создайте данные

Данные для задачи включают в себя матрицу расстояний из предыдущего примера VRP, а также список пар мест получения и доставки, data['pickups_deliveries'] , соответствующий направленным ребрам на диаграмме выше. Код ниже определяет места получения и доставки.

Питон

    data["pickups_deliveries"] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]

С++

  const std::vector<std::vector<RoutingIndexManager::NodeIndex>>
      pickups_deliveries{
          {RoutingIndexManager::NodeIndex{1},
           RoutingIndexManager::NodeIndex{6}},
          {RoutingIndexManager::NodeIndex{2},
           RoutingIndexManager::NodeIndex{10}},
          {RoutingIndexManager::NodeIndex{4},
           RoutingIndexManager::NodeIndex{3}},
          {RoutingIndexManager::NodeIndex{5},
           RoutingIndexManager::NodeIndex{9}},
          {RoutingIndexManager::NodeIndex{7},
           RoutingIndexManager::NodeIndex{8}},
          {RoutingIndexManager::NodeIndex{15},
           RoutingIndexManager::NodeIndex{11}},
          {RoutingIndexManager::NodeIndex{13},
           RoutingIndexManager::NodeIndex{12}},
          {RoutingIndexManager::NodeIndex{16},
           RoutingIndexManager::NodeIndex{14}},
      };

Ява

    public final int[][] pickupsDeliveries = {
        {1, 6},
        {2, 10},
        {4, 3},
        {5, 9},
        {7, 8},
        {15, 11},
        {13, 12},
        {16, 14},
    };

С#

        public int[][] PickupsDeliveries = {
            new int[] { 1, 6 }, new int[] { 2, 10 },  new int[] { 4, 3 },   new int[] { 5, 9 },
            new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 },
        };

Для каждой пары первая запись — это индекс места получения, а вторая — индекс места доставки.

Определите запросы на получение и доставку

Следующий код определяет запросы на получение и доставку, используя места получения и доставки в data['pickups_deliveries'] .

Питон

    for request in data["pickups_deliveries"]:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index)
        )
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index)
            <= distance_dimension.CumulVar(delivery_index)
        )

С++

  Solver* const solver = routing.solver();
  for (const auto& request : data.pickups_deliveries) {
    const int64_t pickup_index = manager.NodeToIndex(request[0]);
    const int64_t delivery_index = manager.NodeToIndex(request[1]);
    routing.AddPickupAndDelivery(pickup_index, delivery_index);
    solver->AddConstraint(solver->MakeEquality(
        routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index)));
    solver->AddConstraint(
        solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index),
                                distance_dimension->CumulVar(delivery_index)));
  }

Ява

    Solver solver = routing.solver();
    for (int[] request : data.pickupsDeliveries) {
      long pickupIndex = manager.nodeToIndex(request[0]);
      long deliveryIndex = manager.nodeToIndex(request[1]);
      routing.addPickupAndDelivery(pickupIndex, deliveryIndex);
      solver.addConstraint(
          solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex)));
      solver.addConstraint(solver.makeLessOrEqual(
          distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex)));
    }

С#

        Solver solver = routing.solver();
        for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++)
        {
            long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]);
            long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]);
            routing.AddPickupAndDelivery(pickupIndex, deliveryIndex);
            solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex)));
            solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex),
                                              distanceDimension.CumulVar(deliveryIndex)));
        }

Для каждой пары команда routing.AddPickupAndDelivery(pickup_index, delivery_index) создает запрос на получение и доставку товара.

В следующей строке добавляется требование о том, что каждый товар должен быть забран и доставлен одним и тем же транспортным средством.

routing.solver().Add(
            routing.VehicleVar(pickup_index) ==
            routing.VehicleVar(delivery_index))

Наконец, мы добавляем очевидное требование о том, что каждый предмет необходимо забрать до его доставки. Для этого мы требуем, чтобы совокупное расстояние транспортного средства в месте получения товара не превышало его совокупное расстояние в месте доставки.

routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

Запуск программы

Полные программы для ВРП с самовывозом и доставкой показаны в следующем разделе. Когда вы запускаете программу, она отображает следующие маршруты.

Objective: 226116
Route for vehicle 0:
 0 ->  13 ->  15 ->  11 ->  12 -> 0
Distance of the route: 1552m

Route for vehicle 1:
 0 ->  5 ->  2 ->  10 ->  16 ->  14 ->  9 -> 0
Distance of the route: 2192m

Route for vehicle 2:
 0 ->  4 ->  3 -> 0
Distance of the route: 1392m

Route for vehicle 3:
 0 ->  7 ->  1 ->  6 ->  8 -> 0
Distance of the route: 1780m

Total Distance of all routes: 6916m

На следующей схеме показаны маршруты:

Полные программы

Полные программы представлены ниже.

Питон

"""Simple Pickup Delivery Problem (PDP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["pickups_deliveries"] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    total_distance = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += f" {manager.IndexToNode(index)} -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f"{manager.IndexToNode(index)}\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        print(plan_output)
        total_distance += route_distance
    print(f"Total Distance of all routes: {total_distance}m")


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Define cost of each arc.
    def distance_callback(from_index, to_index):
        """Returns the manhattan distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = "Distance"
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name,
    )
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Define Transportation Requests.
    for request in data["pickups_deliveries"]:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index)
        )
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index)
            <= distance_dimension.CumulVar(delivery_index)
        )

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

С++

#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<std::vector<RoutingIndexManager::NodeIndex>>
      pickups_deliveries{
          {RoutingIndexManager::NodeIndex{1},
           RoutingIndexManager::NodeIndex{6}},
          {RoutingIndexManager::NodeIndex{2},
           RoutingIndexManager::NodeIndex{10}},
          {RoutingIndexManager::NodeIndex{4},
           RoutingIndexManager::NodeIndex{3}},
          {RoutingIndexManager::NodeIndex{5},
           RoutingIndexManager::NodeIndex{9}},
          {RoutingIndexManager::NodeIndex{7},
           RoutingIndexManager::NodeIndex{8}},
          {RoutingIndexManager::NodeIndex{15},
           RoutingIndexManager::NodeIndex{11}},
          {RoutingIndexManager::NodeIndex{13},
           RoutingIndexManager::NodeIndex{12}},
          {RoutingIndexManager::NodeIndex{16},
           RoutingIndexManager::NodeIndex{14}},
      };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t total_distance{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      route << manager.IndexToNode(index).value() << " -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    total_distance += route_distance;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpGlobalSpan() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Define cost of each arc.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Distance constraint.
  routing.AddDimension(transit_callback_index,  // transit callback
                       0,                       // no slack
                       3000,  // vehicle maximum travel distance
                       true,  // start cumul to zero
                       "Distance");
  RoutingDimension* distance_dimension =
      routing.GetMutableDimension("Distance");
  distance_dimension->SetGlobalSpanCostCoefficient(100);

  // Define Transportation Requests.
  Solver* const solver = routing.solver();
  for (const auto& request : data.pickups_deliveries) {
    const int64_t pickup_index = manager.NodeToIndex(request[0]);
    const int64_t delivery_index = manager.NodeToIndex(request[1]);
    routing.AddPickupAndDelivery(pickup_index, delivery_index);
    solver->AddConstraint(solver->MakeEquality(
        routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index)));
    solver->AddConstraint(
        solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index),
                                distance_dimension->CumulVar(delivery_index)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpGlobalSpan();
  return EXIT_SUCCESS;
}

Ява

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.Solver;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** Minimal Pickup & Delivery Problem (PDP).*/
public class VrpPickupDelivery {
  private static final Logger logger = Logger.getLogger(VrpPickupDelivery.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final int[][] pickupsDeliveries = {
        {1, 6},
        {2, 10},
        {4, 3},
        {5, 9},
        {7, 8},
        {15, 11},
        {13, 12},
        {16, 14},
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    long totalDistance = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        route += manager.indexToNode(index) + " -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      logger.info(route + manager.indexToNode(index));
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Distance constraint.
    routing.addDimension(transitCallbackIndex, // transit callback index
        0, // no slack
        3000, // vehicle maximum travel distance
        true, // start cumul to zero
        "Distance");
    RoutingDimension distanceDimension = routing.getMutableDimension("Distance");
    distanceDimension.setGlobalSpanCostCoefficient(100);

    // Define Transportation Requests.
    Solver solver = routing.solver();
    for (int[] request : data.pickupsDeliveries) {
      long pickupIndex = manager.nodeToIndex(request[0]);
      long deliveryIndex = manager.nodeToIndex(request[1]);
      routing.addPickupAndDelivery(pickupIndex, deliveryIndex);
      solver.addConstraint(
          solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex)));
      solver.addConstraint(solver.makeLessOrEqual(
          distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PARALLEL_CHEAPEST_INSERTION)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

С#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal Pickup & Delivery Problem (PDP).
/// </summary>
public class VrpPickupDelivery
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public int[][] PickupsDeliveries = {
            new int[] { 1, 6 }, new int[] { 2, 10 },  new int[] { 4, 3 },   new int[] { 5, 9 },
            new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 },
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        long totalDistance = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                Console.Write("{0} -> ", manager.IndexToNode((int)index));
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);


        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, 0, 3000,
                             true, // start cumul to zero
                             "Distance");
        RoutingDimension distanceDimension = routing.GetMutableDimension("Distance");
        distanceDimension.SetGlobalSpanCostCoefficient(100);

        // Define Transportation Requests.
        Solver solver = routing.solver();
        for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++)
        {
            long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]);
            long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]);
            routing.AddPickupAndDelivery(pickupIndex, deliveryIndex);
            solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex)));
            solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex),
                                              distanceDimension.CumulVar(deliveryIndex)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}