Problème de vendeur de voyages

Cette section présente un exemple qui montre comment résoudre le problème du vendeur itinérant (TSP) pour les établissements affichés sur la carte ci-dessous.

Les sections suivantes présentent les programmes en Python, C++, Java et C# qui résolvent le TSP à l'aide de OR-Tools.

Créer les données

Le code ci-dessous crée les données pour le problème.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
        [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
        [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
        [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
        [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
        [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
        [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
        [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
        [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
        [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
        [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
        [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
        [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

Java

static class DataModel {
  public final long[][] distanceMatrix = {
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  public final int vehicleNumber = 1;
  public final int depot = 0;
}

C#

class DataModel
{
    public long[,] DistanceMatrix = {
        { 0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972 },
        { 2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579 },
        { 713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260 },
        { 1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987 },
        { 1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371 },
        { 1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999 },
        { 2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701 },
        { 213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099 },
        { 2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600 },
        { 875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162 },
        { 1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200 },
        { 2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504 },
        { 1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0 },
    };
    public int VehicleNumber = 1;
    public int Depot = 0;
};

La matrice des distances est un tableau dont l'entrée i, j correspond à la distance entre l'emplacement i et l'emplacement j en miles, où les index de tableau correspondent aux emplacements dans l'ordre suivant:

0. New York - 1. Los Angeles - 2. Chicago - 3. Minneapolis - 4. Denver - 5. Dallas
- 6. Seattle - 7. Boston - 8. San Francisco - 9. St. Louis - 10. Houston - 11. Phoenix - 12. Salt Lake City

Les données incluent également:

  • Nombre de véhicules concernés par le problème (1), car il s'agit d'un TSP. (Pour un problème de routage du véhicule, le nombre de véhicules peut être supérieur à 1.)
  • Le dépôt : point de départ et d'arrivée de l'itinéraire. Dans ce cas, le dépôt est égal à 0, ce qui correspond à New York.

Autres façons de créer la matrice des distances

Dans cet exemple, la matrice des distances est explicitement définie dans le programme. Il est également possible d'utiliser une fonction pour calculer des distances entre des lieux : par exemple, la formule euclidienne pour la distance entre les points dans le plan. Cependant, il est toujours plus efficace de précalculer toutes les distances entre les emplacements et de les stocker dans une matrice, plutôt que de les calculer au moment de l'exécution. Consultez la section Exemple: percer un circuit imprimé pour obtenir un exemple de création de la matrice de distance de cette manière.

Une autre solution consiste à utiliser l'API Google Maps Distance Matrix pour créer de façon dynamique une matrice de distance (ou de durée du trajet) pour un problème d'itinéraire.

Créer le modèle de routage

Le code suivant, figurant dans la section principale des programmes, crée le gestionnaire d'index (manager) et le modèle de routage (routing). La méthode manager.IndexToNode convertit les index internes du solutionneur (que vous pouvez ignorer en toute sécurité) en chiffres pour les emplacements. Les numéros d'emplacement correspondent aux indices de la matrice des distances.

Python

data = create_data_model()
manager = pywrapcp.RoutingIndexManager(
    len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
)
routing = pywrapcp.RoutingModel(manager)

C++

DataModel data;
RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                            data.depot);
RoutingModel routing(manager);

Java

final DataModel data = new DataModel();
RoutingIndexManager manager =
    new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);
RoutingModel routing = new RoutingModel(manager);

C#

DataModel data = new DataModel();
RoutingIndexManager manager =
    new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);
RoutingModel routing = new RoutingModel(manager);

Les entrées de RoutingIndexManager sont les suivantes:

  • Nombre de lignes de la matrice des distances, qui correspond au nombre de lieux (y compris le dépôt).
  • Nombre de véhicules concernés par le problème.
  • Nœud correspondant au dépôt.

Créer le rappel de distance

Pour utiliser l'outil de résolution d'itinéraires, vous devez créer un rappel de distance (ou en transports en commun). Cette fonction prend une paire d'emplacements et renvoie la distance entre elles. La méthode la plus simple consiste à utiliser la matrice de distance.

La fonction suivante crée le rappel et l'enregistre avec le résolveur en tant que transit_callback_index.

Python

def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data["distance_matrix"][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)
  

C++

const int transit_callback_index = routing.RegisterTransitCallback(
    [&data, &manager](const int64_t from_index,
                      const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to distance matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return data.distance_matrix[from_node][to_node];
    });
  

Java

final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return data.distanceMatrix[fromNode][toNode];
    });
  

C#

int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to
                                                               // distance matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return data.DistanceMatrix[fromNode, toNode];
                                                           });
  

The callback accepts two indices, from_index and to_index, and returns the corresponding entry of the distance matrix.

Set the cost of travel

The arc cost evaluator tells the solver how to calculate the cost of travel between any two locations — in other words, the cost of the edge (or arc) joining them in the graph for the problem. The following code sets the arc cost evaluator.

Python

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

Java

routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

C#

routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

Dans cet exemple, l'évaluateur de coût d'un arc est le transit_callback_index, qui est la référence interne au solutionneur concernant le rappel de distance. Cela signifie que le coût du trajet entre deux lieux n'est que la distance entre eux. En général, les coûts peuvent également impliquer d'autres facteurs.

À l'aide de la méthode routing.SetArcCostEvaluatorOfVehicle(), vous pouvez également définir plusieurs évaluateurs de coût d'un arc qui dépendent du véhicule en question. Par exemple, si les véhicules ont des vitesses différentes, vous pouvez définir le coût du trajet entre les emplacements comme la distance divisée par la vitesse du véhicule, c'est-à-dire le temps de trajet.

Définir les paramètres de recherche

Le code suivant définit les paramètres de recherche par défaut et une méthode heuristique permettant de trouver la première solution:

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
    FirstSolutionStrategy::PATH_CHEAPEST_ARC);

Java

RoutingSearchParameters searchParameters =
    main.defaultRoutingSearchParameters()
        .toBuilder()
        .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
        .build();

C#

RoutingSearchParameters searchParameters =
    operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

Le code définit la première stratégie de solution sur PATH_CHEAPEST_ARC, ce qui crée une route initiale pour le résolveur en ajoutant de manière répétée des arêtes avec la pondération la plus faible qui ne mènent pas à un nœud précédemment visité (autre que le dépôt). Pour en savoir plus, consultez la section Première stratégie de solution.

Ajouter l'imprimante de la solution

La fonction qui affiche la solution renvoyée par le solutionneur est présentée ci-dessous. La fonction extrait la route de la solution et l'affiche sur la console.

Python

def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()} miles")
    index = routing.Start(0)
    plan_output = "Route for vehicle 0:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Route distance: {route_distance}miles\n"

C++

//! @brief Print the solution.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Inspect solution.
  LOG(INFO) << "Objective: " << solution.ObjectiveValue() << " miles";
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective: " + solution.objectiveValue() + "miles");
  // Inspect solution.
  logger.info("Route:");
  long routeDistance = 0;
  String route = "";
  long index = routing.start(0);
  while (!routing.isEnd(index)) {
    route += manager.indexToNode(index) + " -> ";
    long previousIndex = index;
    index = solution.value(routing.nextVar(index));
    routeDistance += routing.getArcCostForVehicle(previousIndex, index, 0);
  }
  route += manager.indexToNode(routing.end(0));
  logger.info(route);
  logger.info("Route distance: " + routeDistance + "miles");
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
{
    Console.WriteLine("Objective: {0} miles", solution.ObjectiveValue());
    // Inspect solution.
    Console.WriteLine("Route:");
    long routeDistance = 0;
    var index = routing.Start(0);
    while (routing.IsEnd(index) == false)
    {
        Console.Write("{0} -> ", manager.IndexToNode((int)index));
        var previousIndex = index;
        index = solution.Value(routing.NextVar(index));
        routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
    }
    Console.WriteLine("{0}", manager.IndexToNode((int)index));
    Console.WriteLine("Route distance: {0}miles", routeDistance);
}

La fonction affiche l'itinéraire optimal et sa distance, fourni par ObjectiveValue().

Résoudre et imprimer la solution

Enfin, vous pouvez appeler le Solveur et imprimer la solution:

Python

solution = routing.SolveWithParameters(search_parameters)
if solution:
    print_solution(manager, routing, solution)

C++

const Assignment* solution = routing.SolveWithParameters(searchParameters);
PrintSolution(manager, routing, *solution);

Java

Assignment solution = routing.solveWithParameters(searchParameters);
printSolution(routing, manager, solution);

C#

Assignment solution = routing.SolveWithParameters(searchParameters);
PrintSolution(routing, manager, solution);

Cela renvoie la solution et affiche l'itinéraire optimal.

Exécuter les programmes

Lorsque vous exécutez les programmes, ils affichent le résultat suivant :

Objective: 7293 miles
Route for vehicle 0:
 0 -> 7 -> 2 -> 3 -> 4 -> 12 -> 6 -> 8 -> 1 -> 11 -> 10 -> 5 -> 9 -> 0

Dans cet exemple, il n'y a qu'un seul itinéraire, car il s'agit d'un TSP. Toutefois, dans le cas de problèmes d'itinéraire plus généraux, la solution contient plusieurs routes.

Enregistrer des routes vers une liste ou un tableau

Au lieu d'imprimer directement la solution, vous pouvez enregistrer la route (ou les routes pour un VRP) dans une liste ou un tableau. Elle a l'avantage de rendre les routes disponibles au cas où vous souhaiteriez les utiliser plus tard. Par exemple, vous pouvez exécuter le programme plusieurs fois avec différents paramètres et enregistrer les routes des solutions renvoyées dans un fichier à des fins de comparaison.

Les fonctions suivantes enregistrent les routes de la solution dans n'importe quel VRP (éventuellement avec plusieurs véhicules) sous forme de liste (Python) ou de tableau (C++).

Python

def get_routes(solution, routing, manager):
  """Get vehicle routes from a solution and store them in an array."""
  # Get vehicle routes and store them in a two dimensional array whose
  # i,j entry is the jth location visited by vehicle i along its route.
  routes = []
  for route_nbr in range(routing.vehicles()):
    index = routing.Start(route_nbr)
    route = [manager.IndexToNode(index)]
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      route.append(manager.IndexToNode(index))
    routes.append(route)
  return routes

C++

std::vector<std::vector<int>> GetRoutes(const Assignment& solution,
                                        const RoutingModel& routing,
                                        const RoutingIndexManager& manager) {
  // Get vehicle routes and store them in a two dimensional array, whose
  // i, j entry is the node for the jth visit of vehicle i.
  std::vector<std::vector<int>> routes(manager.num_vehicles());
  // Get routes.
  for (int vehicle_id = 0; vehicle_id < manager.num_vehicles(); ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    routes[vehicle_id].push_back(manager.IndexToNode(index).value());
    while (!routing.IsEnd(index)) {
      index = solution.Value(routing.NextVar(index));
      routes[vehicle_id].push_back(manager.IndexToNode(index).value());
    }
  }
  return routes;
}

Vous pouvez utiliser ces fonctions pour obtenir les routes de tous les exemples VRP de la section "Routage".

Le code suivant affiche les routes.

Python

routes = get_routes(solution, routing, manager)
# Display the routes.
for i, route in enumerate(routes):
  print('Route', i, route)

C++

const std::vector⟨std::vector⟨int⟩⟩
    routes = GetRoutes(*solution,
                        routing,
                        manager);
// Display the routes.
for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
  LOG(INFO) << "Route " << vehicle_id;
  for (int j = 1; j < routes[vehicle_id].size(); ++j) {
    LOG(INFO) << routes[vehicle_id][j];
  }
}

Pour l'exemple actuel, ce code renvoie l'itinéraire suivant:

Route 0 [0, 7, 2, 3, 4, 12, 6, 8, 1, 11, 10, 5, 9, 0]

À titre d'exercice, modifiez le code ci-dessus pour mettre en forme le résultat de la même manière que l'imprimante de la solution du programme.

Programmes complets

Les TSP complets sont présentés ci-dessous.

Python

"""Simple Travelling Salesperson Problem (TSP) between cities."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
        [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
        [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
        [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
        [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
        [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
        [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
        [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
        [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
        [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
        [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
        [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
        [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data


def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()} miles")
    index = routing.Start(0)
    plan_output = "Route for vehicle 0:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Route distance: {route_distance}miles\n"


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cmath>
#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Inspect solution.
  LOG(INFO) << "Objective: " << solution.ObjectiveValue() << " miles";
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void Tsp() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(manager, routing, *solution);
}

}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::Tsp();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;


/** Minimal TSP using distance matrix. */
public class TspCities {
  private static final Logger logger = Logger.getLogger(TspCities.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
        {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
        {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
        {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
        {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
        {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
        {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
        {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
        {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
        {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
        {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
        {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
        {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
    };
    public final int vehicleNumber = 1;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue() + "miles");
    // Inspect solution.
    logger.info("Route:");
    long routeDistance = 0;
    String route = "";
    long index = routing.start(0);
    while (!routing.isEnd(index)) {
      route += manager.indexToNode(index) + " -> ";
      long previousIndex = index;
      index = solution.value(routing.nextVar(index));
      routeDistance += routing.getArcCostForVehicle(previousIndex, index, 0);
    }
    route += manager.indexToNode(routing.end(0));
    logger.info(route);
    logger.info("Route distance: " + routeDistance + "miles");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal TSP using distance matrix.
/// </summary>
public class TspCities
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972 },
            { 2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579 },
            { 713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260 },
            { 1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987 },
            { 1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371 },
            { 1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999 },
            { 2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701 },
            { 213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099 },
            { 2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600 },
            { 875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162 },
            { 1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200 },
            { 2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504 },
            { 1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0 },
        };
        public int VehicleNumber = 1;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
    {
        Console.WriteLine("Objective: {0} miles", solution.ObjectiveValue());
        // Inspect solution.
        Console.WriteLine("Route:");
        long routeDistance = 0;
        var index = routing.Start(0);
        while (routing.IsEnd(index) == false)
        {
            Console.Write("{0} -> ", manager.IndexToNode((int)index));
            var previousIndex = index;
            index = solution.Value(routing.NextVar(index));
            routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
        }
        Console.WriteLine("{0}", manager.IndexToNode((int)index));
        Console.WriteLine("Route distance: {0}miles", routeDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(routing, manager, solution);
    }
}

Exemple: percer un circuit imprimé

L'exemple suivant consiste à percer des trous dans un circuit électronique avec un marteau-piqueur automatisé. Le problème est de trouver l'itinéraire le plus court pour que la perceuse embarque sur la plaque afin de percer tous les trous requis. L'exemple est issu de TSPLIB, une bibliothèque de problèmes TSP.

Voici le graphique à nuage de points des emplacements des trous:

Les sections suivantes présentent des programmes qui permettent de résoudre le problème d'un circuit électronique en utilisant les paramètres de recherche par défaut du résolveur. Ensuite, nous vous montrerons comment trouver une meilleure solution en modifiant la stratégie de recherche.

Créer les données

Les données concernant le problème sont constituées de 280 points dans le plan, comme indiqué dans le graphique à nuage de points ci-dessus. Le programme crée les données dans un tableau de paires ordonnées correspondant aux points du plan, comme illustré ci-dessous.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    # Locations in block units
    data["locations"] = [
        # fmt: off
      (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157),
      (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169),
      (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145),
      (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169),
      (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153),
      (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165),
      (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129),
      (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153),
      (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145),
      (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113),
      (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89),
      (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81),
      (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41),
      (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73),
      (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43),
      (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17),
      (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25),
      (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49),
      (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73),
      (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105),
      (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145),
      (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137),
      (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93),
      (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53),
      (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85),
      (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101),
      (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41),
      (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9),
      (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49),
      (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61),
      (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21),
      (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9),
      (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37),
      (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57),
      (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69),
      (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45),
      (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21),
      (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61),
      (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53),
      (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93),
      (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85),
      (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85),
      (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109),
      (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101),
      (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125),
      (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145),
      (246, 141), (252, 125), (260, 129), (280, 133)
        # fmt: on
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int>> locations{
      {288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157}, {246, 157},
      {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145},
      {156, 145}, {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169},
      {156, 169}, {140, 169}, {132, 169}, {124, 169}, {116, 161}, {104, 153},
      {104, 161}, {104, 169}, {90, 165},  {80, 157},  {64, 157},  {64, 165},
      {56, 169},  {56, 161},  {56, 153},  {56, 145},  {56, 137},  {56, 129},
      {56, 121},  {40, 121},  {40, 129},  {40, 137},  {40, 145},  {40, 153},
      {40, 161},  {40, 169},  {32, 169},  {32, 161},  {32, 153},  {32, 145},
      {32, 137},  {32, 129},  {32, 121},  {32, 113},  {40, 113},  {56, 113},
      {56, 105},  {48, 99},   {40, 99},   {32, 97},   {32, 89},   {24, 89},
      {16, 97},   {16, 109},  {8, 109},   {8, 97},    {8, 89},    {8, 81},
      {8, 73},    {8, 65},    {8, 57},    {16, 57},   {8, 49},    {8, 41},
      {24, 45},   {32, 41},   {32, 49},   {32, 57},   {32, 65},   {32, 73},
      {32, 81},   {40, 83},   {40, 73},   {40, 63},   {40, 51},   {44, 43},
      {44, 35},   {44, 27},   {32, 25},   {24, 25},   {16, 25},   {16, 17},
      {24, 17},   {32, 17},   {44, 11},   {56, 9},    {56, 17},   {56, 25},
      {56, 33},   {56, 41},   {64, 41},   {72, 41},   {72, 49},   {56, 49},
      {48, 51},   {56, 57},   {56, 65},   {48, 63},   {48, 73},   {56, 73},
      {56, 81},   {48, 83},   {56, 89},   {56, 97},   {104, 97},  {104, 105},
      {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137},
      {164, 137}, {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93},
      {172, 85},  {180, 85},  {180, 77},  {180, 69},  {180, 61},  {180, 53},
      {172, 53},  {172, 61},  {172, 69},  {172, 77},  {164, 81},  {148, 85},
      {124, 85},  {124, 93},  {124, 109}, {124, 125}, {124, 117}, {124, 101},
      {104, 89},  {104, 81},  {104, 73},  {104, 65},  {104, 49},  {104, 41},
      {104, 33},  {104, 25},  {104, 17},  {92, 9},    {80, 9},    {72, 9},
      {64, 21},   {72, 25},   {80, 25},   {80, 25},   {80, 41},   {88, 49},
      {104, 57},  {124, 69},  {124, 77},  {132, 81},  {140, 65},  {132, 61},
      {124, 61},  {124, 53},  {124, 45},  {124, 37},  {124, 29},  {132, 21},
      {124, 21},  {120, 9},   {128, 9},   {136, 9},   {148, 9},   {162, 9},
      {156, 25},  {172, 21},  {180, 21},  {180, 29},  {172, 29},  {172, 37},
      {172, 45},  {180, 45},  {180, 37},  {188, 41},  {196, 49},  {204, 57},
      {212, 65},  {220, 73},  {228, 69},  {228, 77},  {236, 77},  {236, 69},
      {236, 61},  {228, 61},  {228, 53},  {236, 53},  {236, 45},  {228, 45},
      {228, 37},  {236, 37},  {236, 29},  {228, 29},  {228, 21},  {236, 21},
      {252, 21},  {260, 29},  {260, 37},  {260, 45},  {260, 53},  {260, 61},
      {260, 69},  {260, 77},  {276, 77},  {276, 69},  {276, 61},  {276, 53},
      {284, 53},  {284, 61},  {284, 69},  {284, 77},  {284, 85},  {284, 93},
      {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93},  {276, 85},
      {268, 97},  {260, 109}, {252, 101}, {260, 93},  {260, 85},  {236, 85},
      {228, 85},  {228, 93},  {236, 93},  {236, 101}, {228, 101}, {228, 109},
      {228, 117}, {228, 125}, {220, 125}, {212, 117}, {204, 109}, {196, 101},
      {188, 93},  {180, 93},  {180, 101}, {180, 109}, {180, 117}, {180, 125},
      {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145}, {236, 145},
      {246, 141}, {252, 125}, {260, 129}, {280, 133},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

Java

static class DataModel {
  public final int[][] locations = {{288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157},
      {246, 157}, {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145}, {156, 145},
      {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169}, {156, 169}, {140, 169},
      {132, 169}, {124, 169}, {116, 161}, {104, 153}, {104, 161}, {104, 169}, {90, 165},
      {80, 157}, {64, 157}, {64, 165}, {56, 169}, {56, 161}, {56, 153}, {56, 145}, {56, 137},
      {56, 129}, {56, 121}, {40, 121}, {40, 129}, {40, 137}, {40, 145}, {40, 153}, {40, 161},
      {40, 169}, {32, 169}, {32, 161}, {32, 153}, {32, 145}, {32, 137}, {32, 129}, {32, 121},
      {32, 113}, {40, 113}, {56, 113}, {56, 105}, {48, 99}, {40, 99}, {32, 97}, {32, 89},
      {24, 89}, {16, 97}, {16, 109}, {8, 109}, {8, 97}, {8, 89}, {8, 81}, {8, 73}, {8, 65},
      {8, 57}, {16, 57}, {8, 49}, {8, 41}, {24, 45}, {32, 41}, {32, 49}, {32, 57}, {32, 65},
      {32, 73}, {32, 81}, {40, 83}, {40, 73}, {40, 63}, {40, 51}, {44, 43}, {44, 35}, {44, 27},
      {32, 25}, {24, 25}, {16, 25}, {16, 17}, {24, 17}, {32, 17}, {44, 11}, {56, 9}, {56, 17},
      {56, 25}, {56, 33}, {56, 41}, {64, 41}, {72, 41}, {72, 49}, {56, 49}, {48, 51}, {56, 57},
      {56, 65}, {48, 63}, {48, 73}, {56, 73}, {56, 81}, {48, 83}, {56, 89}, {56, 97}, {104, 97},
      {104, 105}, {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137}, {164, 137},
      {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93}, {172, 85}, {180, 85}, {180, 77},
      {180, 69}, {180, 61}, {180, 53}, {172, 53}, {172, 61}, {172, 69}, {172, 77}, {164, 81},
      {148, 85}, {124, 85}, {124, 93}, {124, 109}, {124, 125}, {124, 117}, {124, 101}, {104, 89},
      {104, 81}, {104, 73}, {104, 65}, {104, 49}, {104, 41}, {104, 33}, {104, 25}, {104, 17},
      {92, 9}, {80, 9}, {72, 9}, {64, 21}, {72, 25}, {80, 25}, {80, 25}, {80, 41}, {88, 49},
      {104, 57}, {124, 69}, {124, 77}, {132, 81}, {140, 65}, {132, 61}, {124, 61}, {124, 53},
      {124, 45}, {124, 37}, {124, 29}, {132, 21}, {124, 21}, {120, 9}, {128, 9}, {136, 9},
      {148, 9}, {162, 9}, {156, 25}, {172, 21}, {180, 21}, {180, 29}, {172, 29}, {172, 37},
      {172, 45}, {180, 45}, {180, 37}, {188, 41}, {196, 49}, {204, 57}, {212, 65}, {220, 73},
      {228, 69}, {228, 77}, {236, 77}, {236, 69}, {236, 61}, {228, 61}, {228, 53}, {236, 53},
      {236, 45}, {228, 45}, {228, 37}, {236, 37}, {236, 29}, {228, 29}, {228, 21}, {236, 21},
      {252, 21}, {260, 29}, {260, 37}, {260, 45}, {260, 53}, {260, 61}, {260, 69}, {260, 77},
      {276, 77}, {276, 69}, {276, 61}, {276, 53}, {284, 53}, {284, 61}, {284, 69}, {284, 77},
      {284, 85}, {284, 93}, {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93}, {276, 85},
      {268, 97}, {260, 109}, {252, 101}, {260, 93}, {260, 85}, {236, 85}, {228, 85}, {228, 93},
      {236, 93}, {236, 101}, {228, 101}, {228, 109}, {228, 117}, {228, 125}, {220, 125},
      {212, 117}, {204, 109}, {196, 101}, {188, 93}, {180, 93}, {180, 101}, {180, 109},
      {180, 117}, {180, 125}, {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145},
      {236, 145}, {246, 141}, {252, 125}, {260, 129}, {280, 133}};
  public final int vehicleNumber = 1;
  public final int depot = 0;
}

C#

class DataModel
{
    public int[,] Locations = {
        { 288, 149 }, { 288, 129 }, { 270, 133 }, { 256, 141 }, { 256, 157 }, { 246, 157 }, { 236, 169 },
        { 228, 169 }, { 228, 161 }, { 220, 169 }, { 212, 169 }, { 204, 169 }, { 196, 169 }, { 188, 169 },
        { 196, 161 }, { 188, 145 }, { 172, 145 }, { 164, 145 }, { 156, 145 }, { 148, 145 }, { 140, 145 },
        { 148, 169 }, { 164, 169 }, { 172, 169 }, { 156, 169 }, { 140, 169 }, { 132, 169 }, { 124, 169 },
        { 116, 161 }, { 104, 153 }, { 104, 161 }, { 104, 169 }, { 90, 165 },  { 80, 157 },  { 64, 157 },
        { 64, 165 },  { 56, 169 },  { 56, 161 },  { 56, 153 },  { 56, 145 },  { 56, 137 },  { 56, 129 },
        { 56, 121 },  { 40, 121 },  { 40, 129 },  { 40, 137 },  { 40, 145 },  { 40, 153 },  { 40, 161 },
        { 40, 169 },  { 32, 169 },  { 32, 161 },  { 32, 153 },  { 32, 145 },  { 32, 137 },  { 32, 129 },
        { 32, 121 },  { 32, 113 },  { 40, 113 },  { 56, 113 },  { 56, 105 },  { 48, 99 },   { 40, 99 },
        { 32, 97 },   { 32, 89 },   { 24, 89 },   { 16, 97 },   { 16, 109 },  { 8, 109 },   { 8, 97 },
        { 8, 89 },    { 8, 81 },    { 8, 73 },    { 8, 65 },    { 8, 57 },    { 16, 57 },   { 8, 49 },
        { 8, 41 },    { 24, 45 },   { 32, 41 },   { 32, 49 },   { 32, 57 },   { 32, 65 },   { 32, 73 },
        { 32, 81 },   { 40, 83 },   { 40, 73 },   { 40, 63 },   { 40, 51 },   { 44, 43 },   { 44, 35 },
        { 44, 27 },   { 32, 25 },   { 24, 25 },   { 16, 25 },   { 16, 17 },   { 24, 17 },   { 32, 17 },
        { 44, 11 },   { 56, 9 },    { 56, 17 },   { 56, 25 },   { 56, 33 },   { 56, 41 },   { 64, 41 },
        { 72, 41 },   { 72, 49 },   { 56, 49 },   { 48, 51 },   { 56, 57 },   { 56, 65 },   { 48, 63 },
        { 48, 73 },   { 56, 73 },   { 56, 81 },   { 48, 83 },   { 56, 89 },   { 56, 97 },   { 104, 97 },
        { 104, 105 }, { 104, 113 }, { 104, 121 }, { 104, 129 }, { 104, 137 }, { 104, 145 }, { 116, 145 },
        { 124, 145 }, { 132, 145 }, { 132, 137 }, { 140, 137 }, { 148, 137 }, { 156, 137 }, { 164, 137 },
        { 172, 125 }, { 172, 117 }, { 172, 109 }, { 172, 101 }, { 172, 93 },  { 172, 85 },  { 180, 85 },
        { 180, 77 },  { 180, 69 },  { 180, 61 },  { 180, 53 },  { 172, 53 },  { 172, 61 },  { 172, 69 },
        { 172, 77 },  { 164, 81 },  { 148, 85 },  { 124, 85 },  { 124, 93 },  { 124, 109 }, { 124, 125 },
        { 124, 117 }, { 124, 101 }, { 104, 89 },  { 104, 81 },  { 104, 73 },  { 104, 65 },  { 104, 49 },
        { 104, 41 },  { 104, 33 },  { 104, 25 },  { 104, 17 },  { 92, 9 },    { 80, 9 },    { 72, 9 },
        { 64, 21 },   { 72, 25 },   { 80, 25 },   { 80, 25 },   { 80, 41 },   { 88, 49 },   { 104, 57 },
        { 124, 69 },  { 124, 77 },  { 132, 81 },  { 140, 65 },  { 132, 61 },  { 124, 61 },  { 124, 53 },
        { 124, 45 },  { 124, 37 },  { 124, 29 },  { 132, 21 },  { 124, 21 },  { 120, 9 },   { 128, 9 },
        { 136, 9 },   { 148, 9 },   { 162, 9 },   { 156, 25 },  { 172, 21 },  { 180, 21 },  { 180, 29 },
        { 172, 29 },  { 172, 37 },  { 172, 45 },  { 180, 45 },  { 180, 37 },  { 188, 41 },  { 196, 49 },
        { 204, 57 },  { 212, 65 },  { 220, 73 },  { 228, 69 },  { 228, 77 },  { 236, 77 },  { 236, 69 },
        { 236, 61 },  { 228, 61 },  { 228, 53 },  { 236, 53 },  { 236, 45 },  { 228, 45 },  { 228, 37 },
        { 236, 37 },  { 236, 29 },  { 228, 29 },  { 228, 21 },  { 236, 21 },  { 252, 21 },  { 260, 29 },
        { 260, 37 },  { 260, 45 },  { 260, 53 },  { 260, 61 },  { 260, 69 },  { 260, 77 },  { 276, 77 },
        { 276, 69 },  { 276, 61 },  { 276, 53 },  { 284, 53 },  { 284, 61 },  { 284, 69 },  { 284, 77 },
        { 284, 85 },  { 284, 93 },  { 284, 101 }, { 288, 109 }, { 280, 109 }, { 276, 101 }, { 276, 93 },
        { 276, 85 },  { 268, 97 },  { 260, 109 }, { 252, 101 }, { 260, 93 },  { 260, 85 },  { 236, 85 },
        { 228, 85 },  { 228, 93 },  { 236, 93 },  { 236, 101 }, { 228, 101 }, { 228, 109 }, { 228, 117 },
        { 228, 125 }, { 220, 125 }, { 212, 117 }, { 204, 109 }, { 196, 101 }, { 188, 93 },  { 180, 93 },
        { 180, 101 }, { 180, 109 }, { 180, 117 }, { 180, 125 }, { 196, 145 }, { 204, 145 }, { 212, 145 },
        { 220, 145 }, { 228, 145 }, { 236, 145 }, { 246, 141 }, { 252, 125 }, { 260, 129 }, { 280, 133 },
    };
    public int VehicleNumber = 1;
    public int Depot = 0;
};

Calculer la matrice des distances

La fonction ci-dessous calcule la distance euclidienne entre deux points de données et la stocke dans un tableau. Étant donné que le résolveur de routage fonctionne sur les nombres entiers, la fonction arrondit les distances calculées à ce nombre. L'arrondi n'affecte pas la solution dans cet exemple, mais peut dans d'autres cas. Consultez la section Effectuer le scaling de la matrice de distance pour éviter les problèmes d'arrondi.

Python

def compute_euclidean_distance_matrix(locations):
    """Creates callback to return distance between points."""
    distances = {}
    for from_counter, from_node in enumerate(locations):
        distances[from_counter] = {}
        for to_counter, to_node in enumerate(locations):
            if from_counter == to_counter:
                distances[from_counter][to_counter] = 0
            else:
                # Euclidean distance
                distances[from_counter][to_counter] = int(
                    math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1]))
                )
    return distances

C++

// @brief Generate distance matrix.
std::vector<std::vector<int64_t>> ComputeEuclideanDistanceMatrix(
    const std::vector<std::vector<int>>& locations) {
  std::vector<std::vector<int64_t>> distances =
      std::vector<std::vector<int64_t>>(
          locations.size(), std::vector<int64_t>(locations.size(), int64_t{0}));
  for (int from_node = 0; from_node < locations.size(); from_node++) {
    for (int to_node = 0; to_node < locations.size(); to_node++) {
      if (from_node != to_node)
        distances[from_node][to_node] = static_cast<int64_t>(
            std::hypot((locations[to_node][0] - locations[from_node][0]),
                       (locations[to_node][1] - locations[from_node][1])));
    }
  }
  return distances;
}

Java

/// @brief Compute Euclidean distance matrix from locations array.
/// @details It uses an array of locations and computes
/// the Euclidean distance between any two locations.
private static long[][] computeEuclideanDistanceMatrix(int[][] locations) {
  // Calculate distance matrix using Euclidean distance.
  long[][] distanceMatrix = new long[locations.length][locations.length];
  for (int fromNode = 0; fromNode < locations.length; ++fromNode) {
    for (int toNode = 0; toNode < locations.length; ++toNode) {
      if (fromNode == toNode) {
        distanceMatrix[fromNode][toNode] = 0;
      } else {
        distanceMatrix[fromNode][toNode] =
            (long) Math.hypot(locations[toNode][0] - locations[fromNode][0],
                locations[toNode][1] - locations[fromNode][1]);
      }
    }
  }
  return distanceMatrix;
}

C#

/// <summary>
///   Euclidean distance implemented as a callback. It uses an array of
///   positions and computes the Euclidean distance between the two
///   positions of two different indices.
/// </summary>
static long[,] ComputeEuclideanDistanceMatrix(in int[,] locations)
{
    // Calculate the distance matrix using Euclidean distance.
    int locationNumber = locations.GetLength(0);
    long[,] distanceMatrix = new long[locationNumber, locationNumber];
    for (int fromNode = 0; fromNode < locationNumber; fromNode++)
    {
        for (int toNode = 0; toNode < locationNumber; toNode++)
        {
            if (fromNode == toNode)
                distanceMatrix[fromNode, toNode] = 0;
            else
                distanceMatrix[fromNode, toNode] =
                    (long)Math.Sqrt(Math.Pow(locations[toNode, 0] - locations[fromNode, 0], 2) +
                                    Math.Pow(locations[toNode, 1] - locations[fromNode, 1], 2));
        }
    }
    return distanceMatrix;
}

Ajouter le rappel de distance

Le code qui crée le rappel de distance est presque le même que dans l'exemple précédent. Toutefois, dans ce cas, le programme appelle la fonction qui calcule la matrice de distance avant d'ajouter le rappel.

Python

distance_matrix = compute_euclidean_distance_matrix(data["locations"])

def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return distance_matrix[from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

const auto distance_matrix = ComputeEuclideanDistanceMatrix(data.locations);
const int transit_callback_index = routing.RegisterTransitCallback(
    [&distance_matrix, &manager](const int64_t from_index,
                                 const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to distance matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return distance_matrix[from_node][to_node];
    });
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

Java

final long[][] distanceMatrix = computeEuclideanDistanceMatrix(data.locations);
final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return distanceMatrix[fromNode][toNode];
    });
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

C#

long[,] distanceMatrix = ComputeEuclideanDistanceMatrix(data.Locations);
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to
                                                               // distance matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return distanceMatrix[fromNode, toNode];
                                                           });
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

Imprimante

La fonction suivante imprime la solution sur la console. Pour que la sortie reste plus compacte, la fonction n'affiche que les index des emplacements de la route.

Python

def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    index = routing.Start(0)
    plan_output = "Route:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Objective: {route_distance}m\n"

C++

//! @brief Print the solution
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  LOG(INFO) << "Objective: " << solution.ObjectiveValue();
  // Inspect solution.
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective: " + solution.objectiveValue());
  // Inspect solution.
  logger.info("Route:");
  long routeDistance = 0;
  String route = "";
  long index = routing.start(0);
  while (!routing.isEnd(index)) {
    route += manager.indexToNode(index) + " -> ";
    long previousIndex = index;
    index = solution.value(routing.nextVar(index));
    routing.getArcCostForVehicle(previousIndex, index, 0);
  }
  route += manager.indexToNode(routing.end(0));
  logger.info(route);
  logger.info("Route distance: " + routeDistance);
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
{
    Console.WriteLine("Objective: {0}", solution.ObjectiveValue());
    // Inspect solution.
    Console.WriteLine("Route:");
    long routeDistance = 0;
    var index = routing.Start(0);
    while (routing.IsEnd(index) == false)
    {
        Console.Write("{0} -> ", manager.IndexToNode((int)index));
        var previousIndex = index;
        index = solution.Value(routing.NextVar(index));
        routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
    }
    Console.WriteLine("{0}", manager.IndexToNode((int)index));
    Console.WriteLine("Route distance: {0}m", routeDistance);
}

Fonction principale

La fonction principale est essentiellement la même que celle de l'exemple précédent, mais elle inclut également un appel à la fonction qui crée la matrice des distances.

Exécuter le programme

Les programmes complets sont présentés dans la section suivante. Lorsque vous exécutez le programme, il affiche la route suivante:

Total distance: 2790

Route of vehicle 0:
0 -> 1 -> 279 -> 2 -> 278 -> 277 -> 247 -> 248 -> 249 -> 246 -> 244 -> 243 -> 242 -> 241 -> 240 ->
239 -> 238 -> 237 -> 236 -> 235 -> 234 -> 233 -> 232 -> 231 -> 230 -> 245 -> 250 -> 229 -> 228 ->
227 -> 226 -> 225 -> 224 -> 223 -> 222 -> 221 -> 220 -> 219 -> 218 -> 217 -> 216 -> 215 -> 214 ->
213 -> 212 -> 211 -> 210 -> 209 -> 208 -> 251 -> 254 -> 255 -> 257 -> 256 -> 253 -> 252 -> 207 ->
206 -> 205 -> 204 -> 203 -> 202 -> 142 -> 141 -> 146 -> 147 -> 140 -> 139 -> 265 -> 136 -> 137 ->
138 -> 148 -> 149 -> 177 -> 176 -> 175 -> 178 -> 179 -> 180 -> 181 -> 182 -> 183 -> 184 -> 186 ->
185 -> 192 -> 196 -> 197 -> 198 -> 144 -> 145 -> 143 -> 199 -> 201 -> 200 -> 195 -> 194 -> 193 ->
191 -> 190 -> 189 -> 188 -> 187 -> 163 -> 164 -> 165 -> 166 -> 167 -> 168 -> 169 -> 171 -> 170 ->
172 -> 105 -> 106 -> 104 -> 103 -> 107 -> 109 -> 110 -> 113 -> 114 -> 116 -> 117 -> 61 -> 62 ->
63 -> 65 -> 64 -> 84 -> 85 -> 115 -> 112 -> 86 -> 83 -> 82 -> 87 -> 111 -> 108 -> 89 -> 90 -> 91 ->
102 -> 101 -> 100 -> 99 -> 98 -> 97 -> 96 -> 95 -> 94 -> 93 -> 92 -> 79 -> 88 -> 81 -> 80 -> 78 ->
77 -> 76 -> 74 -> 75 -> 73 -> 72 -> 71 -> 70 -> 69 -> 66 -> 68 -> 67 -> 57 -> 56 -> 55 -> 54 ->
53 -> 52 -> 51 -> 50 -> 49 -> 48 -> 47 -> 46 -> 45 -> 44 -> 43 -> 58 -> 60 -> 59 -> 42 -> 41 ->
40 -> 39 -> 38 -> 37 -> 36 -> 35 -> 34 -> 33 -> 32 -> 31 -> 30 -> 29 -> 124 -> 123 -> 122 -> 121 ->
120 -> 119 -> 118 -> 156 -> 157 -> 158 -> 173 -> 162 -> 161 -> 160 -> 174 -> 159 -> 150 -> 151 ->
155 -> 152 -> 154 -> 153 -> 128 -> 129 -> 130 -> 131 -> 18 -> 19 -> 20 -> 127 -> 126 -> 125 -> 28 ->
27 -> 26 -> 25 -> 21 -> 24 -> 22 -> 23 -> 13 -> 12 -> 14 -> 11 -> 10 -> 9 -> 7 -> 8 -> 6 -> 5 ->
275 -> 274 -> 273 -> 272 -> 271 -> 270 -> 15 -> 16 -> 17 -> 132 -> 133 -> 269 -> 268 -> 134 ->
135 -> 267 -> 266 -> 264 -> 263 -> 262 -> 261 -> 260 -> 258 -> 259 -> 276 -> 3 -> 4 -> 0

Voici un graphique de l'itinéraire correspondant:

La bibliothèque OR-Tools trouve la visite ci-dessus très rapidement: en moins d'une seconde sur un ordinateur type. La durée totale de la visite ci-dessus est de 2 790.

Programmes complets

Voici les programmes complets pour l'exemple de circuit imprimé.

Python

"""Simple Travelling Salesperson Problem (TSP) on a circuit board."""

import math
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    # Locations in block units
    data["locations"] = [
        # fmt: off
      (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157),
      (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169),
      (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145),
      (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169),
      (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153),
      (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165),
      (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129),
      (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153),
      (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145),
      (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113),
      (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89),
      (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81),
      (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41),
      (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73),
      (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43),
      (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17),
      (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25),
      (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49),
      (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73),
      (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105),
      (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145),
      (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137),
      (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93),
      (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53),
      (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85),
      (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101),
      (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41),
      (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9),
      (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49),
      (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61),
      (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21),
      (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9),
      (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37),
      (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57),
      (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69),
      (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45),
      (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21),
      (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61),
      (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53),
      (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93),
      (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85),
      (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85),
      (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109),
      (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101),
      (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125),
      (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145),
      (246, 141), (252, 125), (260, 129), (280, 133)
        # fmt: on
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data


def compute_euclidean_distance_matrix(locations):
    """Creates callback to return distance between points."""
    distances = {}
    for from_counter, from_node in enumerate(locations):
        distances[from_counter] = {}
        for to_counter, to_node in enumerate(locations):
            if from_counter == to_counter:
                distances[from_counter][to_counter] = 0
            else:
                # Euclidean distance
                distances[from_counter][to_counter] = int(
                    math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1]))
                )
    return distances


def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    index = routing.Start(0)
    plan_output = "Route:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Objective: {route_distance}m\n"


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["locations"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    distance_matrix = compute_euclidean_distance_matrix(data["locations"])

    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return distance_matrix[from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cmath>
#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int>> locations{
      {288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157}, {246, 157},
      {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145},
      {156, 145}, {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169},
      {156, 169}, {140, 169}, {132, 169}, {124, 169}, {116, 161}, {104, 153},
      {104, 161}, {104, 169}, {90, 165},  {80, 157},  {64, 157},  {64, 165},
      {56, 169},  {56, 161},  {56, 153},  {56, 145},  {56, 137},  {56, 129},
      {56, 121},  {40, 121},  {40, 129},  {40, 137},  {40, 145},  {40, 153},
      {40, 161},  {40, 169},  {32, 169},  {32, 161},  {32, 153},  {32, 145},
      {32, 137},  {32, 129},  {32, 121},  {32, 113},  {40, 113},  {56, 113},
      {56, 105},  {48, 99},   {40, 99},   {32, 97},   {32, 89},   {24, 89},
      {16, 97},   {16, 109},  {8, 109},   {8, 97},    {8, 89},    {8, 81},
      {8, 73},    {8, 65},    {8, 57},    {16, 57},   {8, 49},    {8, 41},
      {24, 45},   {32, 41},   {32, 49},   {32, 57},   {32, 65},   {32, 73},
      {32, 81},   {40, 83},   {40, 73},   {40, 63},   {40, 51},   {44, 43},
      {44, 35},   {44, 27},   {32, 25},   {24, 25},   {16, 25},   {16, 17},
      {24, 17},   {32, 17},   {44, 11},   {56, 9},    {56, 17},   {56, 25},
      {56, 33},   {56, 41},   {64, 41},   {72, 41},   {72, 49},   {56, 49},
      {48, 51},   {56, 57},   {56, 65},   {48, 63},   {48, 73},   {56, 73},
      {56, 81},   {48, 83},   {56, 89},   {56, 97},   {104, 97},  {104, 105},
      {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137},
      {164, 137}, {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93},
      {172, 85},  {180, 85},  {180, 77},  {180, 69},  {180, 61},  {180, 53},
      {172, 53},  {172, 61},  {172, 69},  {172, 77},  {164, 81},  {148, 85},
      {124, 85},  {124, 93},  {124, 109}, {124, 125}, {124, 117}, {124, 101},
      {104, 89},  {104, 81},  {104, 73},  {104, 65},  {104, 49},  {104, 41},
      {104, 33},  {104, 25},  {104, 17},  {92, 9},    {80, 9},    {72, 9},
      {64, 21},   {72, 25},   {80, 25},   {80, 25},   {80, 41},   {88, 49},
      {104, 57},  {124, 69},  {124, 77},  {132, 81},  {140, 65},  {132, 61},
      {124, 61},  {124, 53},  {124, 45},  {124, 37},  {124, 29},  {132, 21},
      {124, 21},  {120, 9},   {128, 9},   {136, 9},   {148, 9},   {162, 9},
      {156, 25},  {172, 21},  {180, 21},  {180, 29},  {172, 29},  {172, 37},
      {172, 45},  {180, 45},  {180, 37},  {188, 41},  {196, 49},  {204, 57},
      {212, 65},  {220, 73},  {228, 69},  {228, 77},  {236, 77},  {236, 69},
      {236, 61},  {228, 61},  {228, 53},  {236, 53},  {236, 45},  {228, 45},
      {228, 37},  {236, 37},  {236, 29},  {228, 29},  {228, 21},  {236, 21},
      {252, 21},  {260, 29},  {260, 37},  {260, 45},  {260, 53},  {260, 61},
      {260, 69},  {260, 77},  {276, 77},  {276, 69},  {276, 61},  {276, 53},
      {284, 53},  {284, 61},  {284, 69},  {284, 77},  {284, 85},  {284, 93},
      {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93},  {276, 85},
      {268, 97},  {260, 109}, {252, 101}, {260, 93},  {260, 85},  {236, 85},
      {228, 85},  {228, 93},  {236, 93},  {236, 101}, {228, 101}, {228, 109},
      {228, 117}, {228, 125}, {220, 125}, {212, 117}, {204, 109}, {196, 101},
      {188, 93},  {180, 93},  {180, 101}, {180, 109}, {180, 117}, {180, 125},
      {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145}, {236, 145},
      {246, 141}, {252, 125}, {260, 129}, {280, 133},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

// @brief Generate distance matrix.
std::vector<std::vector<int64_t>> ComputeEuclideanDistanceMatrix(
    const std::vector<std::vector<int>>& locations) {
  std::vector<std::vector<int64_t>> distances =
      std::vector<std::vector<int64_t>>(
          locations.size(), std::vector<int64_t>(locations.size(), int64_t{0}));
  for (int from_node = 0; from_node < locations.size(); from_node++) {
    for (int to_node = 0; to_node < locations.size(); to_node++) {
      if (from_node != to_node)
        distances[from_node][to_node] = static_cast<int64_t>(
            std::hypot((locations[to_node][0] - locations[from_node][0]),
                       (locations[to_node][1] - locations[from_node][1])));
    }
  }
  return distances;
}

//! @brief Print the solution
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  LOG(INFO) << "Objective: " << solution.ObjectiveValue();
  // Inspect solution.
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void Tsp() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.locations.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  const auto distance_matrix = ComputeEuclideanDistanceMatrix(data.locations);
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&distance_matrix, &manager](const int64_t from_index,
                                   const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::Tsp();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;


/** Minimal TSP. */
public class TspCircuitBoard {
  private static final Logger logger = Logger.getLogger(TspCircuitBoard.class.getName());

  static class DataModel {
    public final int[][] locations = {{288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157},
        {246, 157}, {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
        {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145}, {156, 145},
        {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169}, {156, 169}, {140, 169},
        {132, 169}, {124, 169}, {116, 161}, {104, 153}, {104, 161}, {104, 169}, {90, 165},
        {80, 157}, {64, 157}, {64, 165}, {56, 169}, {56, 161}, {56, 153}, {56, 145}, {56, 137},
        {56, 129}, {56, 121}, {40, 121}, {40, 129}, {40, 137}, {40, 145}, {40, 153}, {40, 161},
        {40, 169}, {32, 169}, {32, 161}, {32, 153}, {32, 145}, {32, 137}, {32, 129}, {32, 121},
        {32, 113}, {40, 113}, {56, 113}, {56, 105}, {48, 99}, {40, 99}, {32, 97}, {32, 89},
        {24, 89}, {16, 97}, {16, 109}, {8, 109}, {8, 97}, {8, 89}, {8, 81}, {8, 73}, {8, 65},
        {8, 57}, {16, 57}, {8, 49}, {8, 41}, {24, 45}, {32, 41}, {32, 49}, {32, 57}, {32, 65},
        {32, 73}, {32, 81}, {40, 83}, {40, 73}, {40, 63}, {40, 51}, {44, 43}, {44, 35}, {44, 27},
        {32, 25}, {24, 25}, {16, 25}, {16, 17}, {24, 17}, {32, 17}, {44, 11}, {56, 9}, {56, 17},
        {56, 25}, {56, 33}, {56, 41}, {64, 41}, {72, 41}, {72, 49}, {56, 49}, {48, 51}, {56, 57},
        {56, 65}, {48, 63}, {48, 73}, {56, 73}, {56, 81}, {48, 83}, {56, 89}, {56, 97}, {104, 97},
        {104, 105}, {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
        {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137}, {164, 137},
        {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93}, {172, 85}, {180, 85}, {180, 77},
        {180, 69}, {180, 61}, {180, 53}, {172, 53}, {172, 61}, {172, 69}, {172, 77}, {164, 81},
        {148, 85}, {124, 85}, {124, 93}, {124, 109}, {124, 125}, {124, 117}, {124, 101}, {104, 89},
        {104, 81}, {104, 73}, {104, 65}, {104, 49}, {104, 41}, {104, 33}, {104, 25}, {104, 17},
        {92, 9}, {80, 9}, {72, 9}, {64, 21}, {72, 25}, {80, 25}, {80, 25}, {80, 41}, {88, 49},
        {104, 57}, {124, 69}, {124, 77}, {132, 81}, {140, 65}, {132, 61}, {124, 61}, {124, 53},
        {124, 45}, {124, 37}, {124, 29}, {132, 21}, {124, 21}, {120, 9}, {128, 9}, {136, 9},
        {148, 9}, {162, 9}, {156, 25}, {172, 21}, {180, 21}, {180, 29}, {172, 29}, {172, 37},
        {172, 45}, {180, 45}, {180, 37}, {188, 41}, {196, 49}, {204, 57}, {212, 65}, {220, 73},
        {228, 69}, {228, 77}, {236, 77}, {236, 69}, {236, 61}, {228, 61}, {228, 53}, {236, 53},
        {236, 45}, {228, 45}, {228, 37}, {236, 37}, {236, 29}, {228, 29}, {228, 21}, {236, 21},
        {252, 21}, {260, 29}, {260, 37}, {260, 45}, {260, 53}, {260, 61}, {260, 69}, {260, 77},
        {276, 77}, {276, 69}, {276, 61}, {276, 53}, {284, 53}, {284, 61}, {284, 69}, {284, 77},
        {284, 85}, {284, 93}, {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93}, {276, 85},
        {268, 97}, {260, 109}, {252, 101}, {260, 93}, {260, 85}, {236, 85}, {228, 85}, {228, 93},
        {236, 93}, {236, 101}, {228, 101}, {228, 109}, {228, 117}, {228, 125}, {220, 125},
        {212, 117}, {204, 109}, {196, 101}, {188, 93}, {180, 93}, {180, 101}, {180, 109},
        {180, 117}, {180, 125}, {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145},
        {236, 145}, {246, 141}, {252, 125}, {260, 129}, {280, 133}};
    public final int vehicleNumber = 1;
    public final int depot = 0;
  }

  /// @brief Compute Euclidean distance matrix from locations array.
  /// @details It uses an array of locations and computes
  /// the Euclidean distance between any two locations.
  private static long[][] computeEuclideanDistanceMatrix(int[][] locations) {
    // Calculate distance matrix using Euclidean distance.
    long[][] distanceMatrix = new long[locations.length][locations.length];
    for (int fromNode = 0; fromNode < locations.length; ++fromNode) {
      for (int toNode = 0; toNode < locations.length; ++toNode) {
        if (fromNode == toNode) {
          distanceMatrix[fromNode][toNode] = 0;
        } else {
          distanceMatrix[fromNode][toNode] =
              (long) Math.hypot(locations[toNode][0] - locations[fromNode][0],
                  locations[toNode][1] - locations[fromNode][1]);
        }
      }
    }
    return distanceMatrix;
  }

  /// @brief Print the solution.
  static void printSolution(
      RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    logger.info("Route:");
    long routeDistance = 0;
    String route = "";
    long index = routing.start(0);
    while (!routing.isEnd(index)) {
      route += manager.indexToNode(index) + " -> ";
      long previousIndex = index;
      index = solution.value(routing.nextVar(index));
      routing.getArcCostForVehicle(previousIndex, index, 0);
    }
    route += manager.indexToNode(routing.end(0));
    logger.info(route);
    logger.info("Route distance: " + routeDistance);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.locations.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final long[][] distanceMatrix = computeEuclideanDistanceMatrix(data.locations);
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal TSP.
///   A description of the problem can be found here:
///   http://en.wikipedia.org/wiki/Travelling_salesperson_problem.
/// </summary>
public class TspCircuitBoard
{
    class DataModel
    {
        public int[,] Locations = {
            { 288, 149 }, { 288, 129 }, { 270, 133 }, { 256, 141 }, { 256, 157 }, { 246, 157 }, { 236, 169 },
            { 228, 169 }, { 228, 161 }, { 220, 169 }, { 212, 169 }, { 204, 169 }, { 196, 169 }, { 188, 169 },
            { 196, 161 }, { 188, 145 }, { 172, 145 }, { 164, 145 }, { 156, 145 }, { 148, 145 }, { 140, 145 },
            { 148, 169 }, { 164, 169 }, { 172, 169 }, { 156, 169 }, { 140, 169 }, { 132, 169 }, { 124, 169 },
            { 116, 161 }, { 104, 153 }, { 104, 161 }, { 104, 169 }, { 90, 165 },  { 80, 157 },  { 64, 157 },
            { 64, 165 },  { 56, 169 },  { 56, 161 },  { 56, 153 },  { 56, 145 },  { 56, 137 },  { 56, 129 },
            { 56, 121 },  { 40, 121 },  { 40, 129 },  { 40, 137 },  { 40, 145 },  { 40, 153 },  { 40, 161 },
            { 40, 169 },  { 32, 169 },  { 32, 161 },  { 32, 153 },  { 32, 145 },  { 32, 137 },  { 32, 129 },
            { 32, 121 },  { 32, 113 },  { 40, 113 },  { 56, 113 },  { 56, 105 },  { 48, 99 },   { 40, 99 },
            { 32, 97 },   { 32, 89 },   { 24, 89 },   { 16, 97 },   { 16, 109 },  { 8, 109 },   { 8, 97 },
            { 8, 89 },    { 8, 81 },    { 8, 73 },    { 8, 65 },    { 8, 57 },    { 16, 57 },   { 8, 49 },
            { 8, 41 },    { 24, 45 },   { 32, 41 },   { 32, 49 },   { 32, 57 },   { 32, 65 },   { 32, 73 },
            { 32, 81 },   { 40, 83 },   { 40, 73 },   { 40, 63 },   { 40, 51 },   { 44, 43 },   { 44, 35 },
            { 44, 27 },   { 32, 25 },   { 24, 25 },   { 16, 25 },   { 16, 17 },   { 24, 17 },   { 32, 17 },
            { 44, 11 },   { 56, 9 },    { 56, 17 },   { 56, 25 },   { 56, 33 },   { 56, 41 },   { 64, 41 },
            { 72, 41 },   { 72, 49 },   { 56, 49 },   { 48, 51 },   { 56, 57 },   { 56, 65 },   { 48, 63 },
            { 48, 73 },   { 56, 73 },   { 56, 81 },   { 48, 83 },   { 56, 89 },   { 56, 97 },   { 104, 97 },
            { 104, 105 }, { 104, 113 }, { 104, 121 }, { 104, 129 }, { 104, 137 }, { 104, 145 }, { 116, 145 },
            { 124, 145 }, { 132, 145 }, { 132, 137 }, { 140, 137 }, { 148, 137 }, { 156, 137 }, { 164, 137 },
            { 172, 125 }, { 172, 117 }, { 172, 109 }, { 172, 101 }, { 172, 93 },  { 172, 85 },  { 180, 85 },
            { 180, 77 },  { 180, 69 },  { 180, 61 },  { 180, 53 },  { 172, 53 },  { 172, 61 },  { 172, 69 },
            { 172, 77 },  { 164, 81 },  { 148, 85 },  { 124, 85 },  { 124, 93 },  { 124, 109 }, { 124, 125 },
            { 124, 117 }, { 124, 101 }, { 104, 89 },  { 104, 81 },  { 104, 73 },  { 104, 65 },  { 104, 49 },
            { 104, 41 },  { 104, 33 },  { 104, 25 },  { 104, 17 },  { 92, 9 },    { 80, 9 },    { 72, 9 },
            { 64, 21 },   { 72, 25 },   { 80, 25 },   { 80, 25 },   { 80, 41 },   { 88, 49 },   { 104, 57 },
            { 124, 69 },  { 124, 77 },  { 132, 81 },  { 140, 65 },  { 132, 61 },  { 124, 61 },  { 124, 53 },
            { 124, 45 },  { 124, 37 },  { 124, 29 },  { 132, 21 },  { 124, 21 },  { 120, 9 },   { 128, 9 },
            { 136, 9 },   { 148, 9 },   { 162, 9 },   { 156, 25 },  { 172, 21 },  { 180, 21 },  { 180, 29 },
            { 172, 29 },  { 172, 37 },  { 172, 45 },  { 180, 45 },  { 180, 37 },  { 188, 41 },  { 196, 49 },
            { 204, 57 },  { 212, 65 },  { 220, 73 },  { 228, 69 },  { 228, 77 },  { 236, 77 },  { 236, 69 },
            { 236, 61 },  { 228, 61 },  { 228, 53 },  { 236, 53 },  { 236, 45 },  { 228, 45 },  { 228, 37 },
            { 236, 37 },  { 236, 29 },  { 228, 29 },  { 228, 21 },  { 236, 21 },  { 252, 21 },  { 260, 29 },
            { 260, 37 },  { 260, 45 },  { 260, 53 },  { 260, 61 },  { 260, 69 },  { 260, 77 },  { 276, 77 },
            { 276, 69 },  { 276, 61 },  { 276, 53 },  { 284, 53 },  { 284, 61 },  { 284, 69 },  { 284, 77 },
            { 284, 85 },  { 284, 93 },  { 284, 101 }, { 288, 109 }, { 280, 109 }, { 276, 101 }, { 276, 93 },
            { 276, 85 },  { 268, 97 },  { 260, 109 }, { 252, 101 }, { 260, 93 },  { 260, 85 },  { 236, 85 },
            { 228, 85 },  { 228, 93 },  { 236, 93 },  { 236, 101 }, { 228, 101 }, { 228, 109 }, { 228, 117 },
            { 228, 125 }, { 220, 125 }, { 212, 117 }, { 204, 109 }, { 196, 101 }, { 188, 93 },  { 180, 93 },
            { 180, 101 }, { 180, 109 }, { 180, 117 }, { 180, 125 }, { 196, 145 }, { 204, 145 }, { 212, 145 },
            { 220, 145 }, { 228, 145 }, { 236, 145 }, { 246, 141 }, { 252, 125 }, { 260, 129 }, { 280, 133 },
        };
        public int VehicleNumber = 1;
        public int Depot = 0;
    };

    /// <summary>
    ///   Euclidean distance implemented as a callback. It uses an array of
    ///   positions and computes the Euclidean distance between the two
    ///   positions of two different indices.
    /// </summary>
    static long[,] ComputeEuclideanDistanceMatrix(in int[,] locations)
    {
        // Calculate the distance matrix using Euclidean distance.
        int locationNumber = locations.GetLength(0);
        long[,] distanceMatrix = new long[locationNumber, locationNumber];
        for (int fromNode = 0; fromNode < locationNumber; fromNode++)
        {
            for (int toNode = 0; toNode < locationNumber; toNode++)
            {
                if (fromNode == toNode)
                    distanceMatrix[fromNode, toNode] = 0;
                else
                    distanceMatrix[fromNode, toNode] =
                        (long)Math.Sqrt(Math.Pow(locations[toNode, 0] - locations[fromNode, 0], 2) +
                                        Math.Pow(locations[toNode, 1] - locations[fromNode, 1], 2));
            }
        }
        return distanceMatrix;
    }

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
    {
        Console.WriteLine("Objective: {0}", solution.ObjectiveValue());
        // Inspect solution.
        Console.WriteLine("Route:");
        long routeDistance = 0;
        var index = routing.Start(0);
        while (routing.IsEnd(index) == false)
        {
            Console.Write("{0} -> ", manager.IndexToNode((int)index));
            var previousIndex = index;
            index = solution.Value(routing.NextVar(index));
            routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
        }
        Console.WriteLine("{0}", manager.IndexToNode((int)index));
        Console.WriteLine("Route distance: {0}m", routeDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.Locations.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Define cost of each arc.
        long[,] distanceMatrix = ComputeEuclideanDistanceMatrix(data.Locations);
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return distanceMatrix[fromNode, toNode];
                                                                   });

        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(routing, manager, solution);
    }
}

Modifier la stratégie sur le Réseau de Recherche

Le résolveur de routage ne renvoie pas toujours la solution optimale à un TSP, car les problèmes de routage sont insolubles en calcul. Par exemple, la solution renvoyée dans l'exemple précédent n'est pas la route optimale.

Pour trouver une meilleure solution, vous pouvez utiliser une stratégie de recherche plus avancée, appelée recherche locale guidée, qui permet au résolveur d'échapper à un minimum local, une solution plus courte que toutes les routes à proximité, mais qui n'est pas le minimum global. Après avoir quitté la valeur minimale locale, le résolveur poursuit la recherche.

Les exemples ci-dessous montrent comment définir une recherche locale guidée pour l'exemple de circuit imprimé.

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (
    routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.seconds = 30
search_parameters.log_search = True

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_local_search_metaheuristic(
    LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
searchParameters.mutable_time_limit()->set_seconds(30);
search_parameters.set_log_search(true);

Java

Ajoutez l'instruction "import" suivante au début du programme :
import com.google.protobuf.Duration;
Définissez ensuite les paramètres de recherche comme suit :
RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
            .setTimeLimit(Duration.newBuilder().setSeconds(30).build())
            .setLogSearch(true)
            .build();

C#

Ajoutez la ligne suivante au début du programme :
using Google.Protobuf.WellKnownTypes; // Duration
Définissez ensuite les paramètres de recherche comme suit :
RoutingSearchParameters searchParameters =
      operations_research_constraint_solver.DefaultRoutingSearchParameters();
    searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
    searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
    searchParameters.TimeLimit = new Duration { Seconds = 30 };
    searchParameters.LogSearch = true;

Pour découvrir d'autres stratégies de recherche à proximité, consultez la page Options de recherche à proximité.

Les exemples ci-dessus permettent également d'activer la journalisation pour la recherche. Bien que la journalisation ne soit pas obligatoire, elle peut être utile pour le débogage.

Lorsque vous exécutez le programme après avoir apporté les modifications ci-dessus, vous obtenez la solution suivante, plus courte que celle présentée dans la section précédente.

Objective: 2672
Route:

0 -> 3 -> 276 -> 4 -> 5 -> 6 -> 8 -> 7 -> 9 -> 10 -> 11 -> 14 -> 12 -> 13 -> 23 -> 22 -> 24 -> 21 ->
25 -> 26 -> 27 -> 28 -> 125 -> 126 -> 127 -> 20 -> 19 -> 130 -> 129 -> 128 -> 153 -> 154 -> 152 ->
155 -> 151 -> 150 -> 177 -> 176 -> 175 -> 180 -> 161 -> 160 -> 174 -> 159 -> 158 -> 157 -> 156 ->
118 -> 119 -> 120 -> 121 -> 122 -> 123 -> 124 -> 29 -> 30 -> 31 -> 32 -> 33 -> 34 -> 35 -> 36 ->
37 -> 38 -> 39 -> 40 -> 41 -> 42 -> 59 -> 60 -> 58 -> 43 -> 44 -> 45 -> 46 -> 47 -> 48 -> 49 ->
50 -> 51 -> 52 -> 53 -> 54 -> 55 -> 56 -> 57 -> 67 -> 68 -> 66 -> 69 -> 70 -> 71 -> 72 -> 73 ->
75 -> 74 -> 76 -> 77 -> 78 -> 80 -> 81 -> 88 -> 79 -> 92 -> 93 -> 94 -> 95 -> 96 -> 97 -> 98 ->
99 -> 100 -> 101 -> 102 -> 91 -> 90 -> 89 -> 108 -> 111 -> 87 -> 82 -> 83 -> 86 -> 112 -> 115 ->
85 -> 84 -> 64 -> 65 -> 63 -> 62 -> 61 -> 117 -> 116 -> 114 -> 113 -> 110 -> 109 -> 107 -> 103 ->
104 -> 105 -> 106 -> 173 -> 172 -> 171 -> 170 -> 169 -> 168 -> 167 -> 166 -> 165 -> 164 -> 163 ->
162 -> 187 -> 188 -> 189 -> 190 -> 191 -> 192 -> 185 -> 186 -> 184 -> 183 -> 182 -> 181 -> 179 ->
178 -> 149 -> 148 -> 138 -> 137 -> 136 -> 266 -> 267 -> 135 -> 134 -> 268 -> 269 -> 133 -> 132 ->
131 -> 18 -> 17 -> 16 -> 15 -> 270 -> 271 -> 272 -> 273 -> 274 -> 275 -> 259 -> 258 -> 260 -> 261 ->
262 -> 263 -> 264 -> 265 -> 139 -> 140 -> 147 -> 146 -> 141 -> 142 -> 145 -> 144 -> 198 -> 197 ->
196 -> 193 -> 194 -> 195 -> 200 -> 201 -> 199 -> 143 -> 202 -> 203 -> 204 -> 205 -> 206 -> 207 ->
252 -> 253 -> 256 -> 257 -> 255 -> 254 -> 251 -> 208 -> 209 -> 210 -> 211 -> 212 -> 213 -> 214 ->
215 -> 216 -> 217 -> 218 -> 219 -> 220 -> 221 -> 222 -> 223 -> 224 -> 225 -> 226 -> 227 -> 232 ->
233 -> 234 -> 235 -> 236 -> 237 -> 230 -> 231 -> 228 -> 229 -> 250 -> 245 -> 238 -> 239 -> 240 ->
241 -> 242 -> 243 -> 244 -> 246 -> 249 -> 248 -> 247 -> 277 -> 278 -> 2 -> 279 -> 1 -> 0

Pour plus d'options de recherche, consultez la page Options de routage.

Les meilleurs algorithmes peuvent désormais résoudre régulièrement des instances du TSP avec des dizaines de milliers de nœuds. Au moment de la rédaction de ce document, l'enregistrement correspond à l'instance pla85900 dans TSPLIB,une application VLSI avec 85 900 nœuds. Pour certaines instances avec des millions de nœuds, il est garanti que les solutions se trouvent à moins de 1% d'une visite optimale.

Mettre la matrice de distance à l'échelle

Étant donné que le résolveur de routage fonctionne sur les entiers, si votre matrice de distance contient des entrées non entières, vous devez arrondir les distances aux entiers. Si certaines distances sont petites, l'arrondi peut affecter la solution.

Pour éviter tout problème d'arrondi, vous pouvez scale la matrice de distance: multipliez toutes les entrées de la matrice par un grand nombre, par exemple 100. Cela multiplie la longueur de chaque route par un facteur de 100, mais cela ne change pas la solution. L'avantage est que maintenant, quand vous arrondissez les entrées de la matrice, la valeur d'arrondi (maximum 0,5) est très faible par rapport aux distances, ce qui n'affecte pas la solution de manière significative.

Si vous mettez à l'échelle la matrice des distances, vous devez également modifier l'imprimante de la solution pour diviser les longueurs des routes mises à l'échelle par le facteur de mise à l'échelle, afin qu'elles affichent les distances non mises à l'échelle des routes.