যেসব প্রতিষ্ঠানের কর্মীরা একাধিক শিফটে কাজ করেন তাদের প্রতিটি দৈনিক শিফটের জন্য পর্যাপ্ত কর্মী নির্ধারণ করতে হবে। সাধারণত, সময়সূচীতে সীমাবদ্ধতা থাকবে, যেমন "কোন কর্মচারীকে পরপর দুই শিফটে কাজ করা উচিত নয়"। সমস্ত সীমাবদ্ধতাকে সন্তুষ্ট করে এমন একটি সময়সূচী খুঁজে পাওয়া গণনাগতভাবে কঠিন হতে পারে।
নিম্নলিখিত বিভাগগুলি কর্মচারী সময়সূচী সমস্যার দুটি উদাহরণ উপস্থাপন করে এবং CP-SAT সমাধানকারী ব্যবহার করে কীভাবে সেগুলি সমাধান করতে হয় তা দেখায়।
আরও পরিশীলিত উদাহরণের জন্য, GitHub-এ এই শিফট শিডিউলিং প্রোগ্রামটি দেখুন।
একটি নার্স সময়সূচী সমস্যা
পরবর্তী উদাহরণে, একজন হাসপাতালের তত্ত্বাবধায়ককে নিম্নলিখিত শর্তাবলী সাপেক্ষে তিন দিনের মেয়াদে চারজন নার্সের জন্য একটি সময়সূচী তৈরি করতে হবে:
- প্রতিটি দিন তিনটি 8-ঘন্টা শিফটে বিভক্ত।
- প্রতিদিন, প্রতিটি শিফট একজন একক নার্সকে বরাদ্দ করা হয় এবং কোনো নার্স এক শিফটের বেশি কাজ করে না।
- প্রতিটি নার্সকে তিন দিনের সময়কালে কমপক্ষে দুটি শিফটে নিয়োগ দেওয়া হয়।
নিম্নলিখিত বিভাগগুলি নার্স শিডিউলিং সমস্যার সমাধান উপস্থাপন করে।
লাইব্রেরি আমদানি করুন
নিম্নলিখিত কোড প্রয়োজনীয় লাইব্রেরি আমদানি করে।
পাইথন
from ortools.sat.python import cp_model
সি++
#include <stdlib.h> #include <atomic> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/time_limit.h"
জাভা
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
সি#
using System; using System.Collections.Generic; using System.IO; using System.Linq; using Google.OrTools.Sat;
উদাহরণের জন্য ডেটা
নিম্নলিখিত কোড উদাহরণের জন্য ডেটা তৈরি করে।
পাইথন
num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days)
সি++
const int num_nurses = 4; const int num_shifts = 3; const int num_days = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0);
জাভা
final int numNurses = 4; final int numDays = 3; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray();
সি#
const int numNurses = 4; const int numDays = 3; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray();
মডেল তৈরি করুন
নিম্নলিখিত কোড মডেল তৈরি করে।
পাইথন
model = cp_model.CpModel()
সি++
CpModelBuilder cp_model;
জাভা
CpModel model = new CpModel();
সি#
CpModel model = new CpModel(); model.Model.Variables.Capacity = numNurses * numDays * numShifts;
ভেরিয়েবল তৈরি করুন
নিম্নলিখিত কোড ভেরিয়েবলের একটি অ্যারে তৈরি করে।
পাইথন
shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")
সি++
std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } }
জাভা
Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } }
সি#
Dictionary<(int, int, int), BoolVar> shifts = new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } }
অ্যারে নার্সদের স্থানান্তরের জন্য অ্যাসাইনমেন্টগুলিকে নিম্নরূপ সংজ্ঞায়িত করে: shifts[(n, d, s)]
1 এর সমান হয় যদি s দিন d-এ নার্স n-কে বরাদ্দ করা হয় এবং অন্যথায় 0।
শিফটে নার্সদের নিয়োগ করুন
এরপরে, আমরা দেখাই কিভাবে নার্সদেরকে নিম্নলিখিত সীমাবদ্ধতা সাপেক্ষে শিফটে বরাদ্দ করা যায়:
- প্রতিটি শিফটে প্রতিদিন একজন করে নার্স নিয়োগ করা হয়।
- প্রতিটি নার্স প্রতিদিন সর্বাধিক এক শিফটে কাজ করে।
এখানে কোড যা প্রথম শর্ত তৈরি করে।
পাইথন
for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)
সি++
for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } }
জাভা
for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } }
সি#
List<ILiteral> literals = new List<ILiteral>(); foreach (int d in allDays) { foreach (int s in allShifts) { foreach (int n in allNurses) { literals.Add(shifts[(n, d, s)]); } model.AddExactlyOne(literals); literals.Clear(); } }
শেষ লাইনটি বলে যে প্রতিটি শিফটের জন্য, সেই শিফটে নির্ধারিত নার্সদের যোগফল হল 1।
এর পরে, এখানে কোডটি রয়েছে যার জন্য প্রতিটি নার্সকে প্রতিদিন সর্বাধিক এক শিফটে কাজ করতে হবে।
পাইথন
for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)
সি++
for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } }
জাভা
for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } }
সি#
foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { literals.Add(shifts[(n, d, s)]); } model.AddAtMostOne(literals); literals.Clear(); } }
প্রতিটি নার্সের জন্য, সেই নার্সের জন্য নির্ধারিত শিফটের যোগফল হল সর্বাধিক 1 ("সর্বাধিক" কারণ একজন নার্সের ছুটির দিন থাকতে পারে)।
সমানভাবে স্থানান্তর বরাদ্দ করুন
এরপরে, আমরা দেখাই কিভাবে নার্সদের যতটা সম্ভব সমানভাবে শিফট বরাদ্দ করা যায়। যেহেতু তিন দিনের মেয়াদে নয়টি শিফট আছে, তাই আমরা চারজন নার্সের প্রত্যেককে দুটি শিফট বরাদ্দ করতে পারি। এর পরে একটি শিফট বাকি থাকবে, যেটি যেকোন নার্সকে নিয়োগ করা যেতে পারে।
নিম্নলিখিত কোডটি নিশ্চিত করে যে প্রতিটি নার্স তিন দিনের সময়ের মধ্যে কমপক্ষে দুটি শিফটে কাজ করে।
পাইথন
# Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: shifts_worked = [] for d in all_days: for s in all_shifts: shifts_worked.append(shifts[(n, d, s)]) model.add(min_shifts_per_nurse <= sum(shifts_worked)) model.add(sum(shifts_worked) <= max_shifts_per_nurse)
সি++
// Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { std::vector<BoolVar> shifts_worked; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts_worked.push_back(shifts[key]); } } cp_model.AddLessOrEqual(min_shifts_per_nurse, LinearExpr::Sum(shifts_worked)); cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked), max_shifts_per_nurse); }
জাভা
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder shiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { shiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); }
সি#
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } List<IntVar> shiftsWorked = new List<IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shiftsWorked.Add(shifts[(n, d, s)]); } } model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); shiftsWorked.Clear(); }
যেহেতু শিডিউল পিরিয়ডে num_shifts * num_days
মোট শিফট আছে, তাই আপনি কমপক্ষে (num_shifts * num_days) // num_nurses
বরাদ্দ করতে পারেন
প্রতিটি নার্সের কাছে স্থানান্তরিত হয়, তবে কিছু শিফট বাকি থাকতে পারে। (এখানে //
পাইথন পূর্ণসংখ্যা বিভাজন অপারেটর, যা স্বাভাবিক ভাগফলের তল প্রদান করে।)
num_nurses = 4
, num_shifts = 3
, এবং num_days = 3
এর প্রদত্ত মানগুলির জন্য, min_shifts_per_nurse
এর মান (3 * 3 // 4) = 2
, তাই আপনি প্রতিটি নার্সকে কমপক্ষে দুটি শিফট বরাদ্দ করতে পারেন। এটি সীমাবদ্ধতা দ্বারা নির্দিষ্ট করা হয়েছে (এখানে পাইথনে)
model.add(min_shifts_per_nurse <= sum(shifts_worked))
যেহেতু তিন দিনের মেয়াদে মোট নয়টি শিফট হয়েছে, তাই প্রতিটি নার্সকে দুটি শিফট বরাদ্দ করার পর একটি বাকি আছে। অতিরিক্ত শিফট যে কোন নার্স নিয়োগ করা যেতে পারে.
চূড়ান্ত লাইন (এখানে পাইথনে)
model.add(sum(shifts_worked) <= max_shifts_per_nurse)
নিশ্চিত করে যে কোনো নার্সকে একের বেশি অতিরিক্ত শিফটে নিয়োগ দেওয়া হয়নি।
এই ক্ষেত্রে সীমাবদ্ধতা প্রয়োজনীয় নয়, কারণ শুধুমাত্র একটি অতিরিক্ত স্থানান্তর আছে। কিন্তু বিভিন্ন পরামিতি মানের জন্য, কিছু অতিরিক্ত পরিবর্তন হতে পারে, যে ক্ষেত্রে সীমাবদ্ধতা প্রয়োজন।
সমাধানকারী পরামিতি আপডেট করুন
একটি অ-অপ্টিমাইজেশন মডেলে, আপনি সমস্ত সমাধানের জন্য অনুসন্ধান সক্ষম করতে পারেন।
পাইথন
solver = cp_model.CpSolver() solver.parameters.linearization_level = 0 # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True
সি++
Model model; SatParameters parameters; parameters.set_linearization_level(0); // Enumerate all solutions. parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters));
জাভা
CpSolver solver = new CpSolver(); solver.getParameters().setLinearizationLevel(0); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true);
সি#
CpSolver solver = new CpSolver(); // Tell the solver to enumerate all solutions. solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true ";
একটি সমাধান কলব্যাক নিবন্ধন করুন
আপনাকে সমাধানকারীতে একটি কলব্যাক নিবন্ধন করতে হবে যা প্রতিটি সমাধানে কল করা হবে।
পাইথন
class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, shifts, num_nurses, num_days, num_shifts, limit): cp_model.CpSolverSolutionCallback.__init__(self) self._shifts = shifts self._num_nurses = num_nurses self._num_days = num_days self._num_shifts = num_shifts self._solution_count = 0 self._solution_limit = limit def on_solution_callback(self): self._solution_count += 1 print(f"Solution {self._solution_count}") for d in range(self._num_days): print(f"Day {d}") for n in range(self._num_nurses): is_working = False for s in range(self._num_shifts): if self.value(self._shifts[(n, d, s)]): is_working = True print(f" Nurse {n} works shift {s}") if not is_working: print(f" Nurse {n} does not work") if self._solution_count >= self._solution_limit: print(f"Stop search after {self._solution_limit} solutions") self.stop_search() def solutionCount(self): return self._solution_count # Display the first five solutions. solution_limit = 5 solution_printer = NursesPartialSolutionPrinter( shifts, num_nurses, num_days, num_shifts, solution_limit )
সি++
// Create an atomic Boolean that will be periodically checked by the limit. std::atomic<bool> stopped(false); model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped); const int kSolutionLimit = 5; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { bool is_working = false; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(r, shifts[key])) { is_working = true; LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s); } } if (!is_working) { LOG(INFO) << " Nurse " << std::to_string(n) << " does not work"; } } } num_solutions++; if (num_solutions >= kSolutionLimit) { stopped = true; LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions."; } }));
জাভা
final int solutionLimit = 5; class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback { public VarArraySolutionPrinterWithLimit( int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) { solutionCount = 0; this.allNurses = allNurses; this.allDays = allDays; this.allShifts = allShifts; this.shifts = shifts; solutionLimit = limit; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d:%n", solutionCount); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { boolean isWorking = false; for (int s : allShifts) { if (booleanValue(shifts[n][d][s])) { isWorking = true; System.out.printf(" Nurse %d work shift %d%n", n, s); } } if (!isWorking) { System.out.printf(" Nurse %d does not work%n", n); } } } solutionCount++; if (solutionCount >= solutionLimit) { System.out.printf("Stop search after %d solutions%n", solutionLimit); stopSearch(); } } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final int[] allNurses; private final int[] allDays; private final int[] allShifts; private final Literal[][][] shifts; private final int solutionLimit; } VarArraySolutionPrinterWithLimit cb = new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit);
সি#
প্রথমে SolutionPrinter
ক্লাস সংজ্ঞায়িত করুন।
public class SolutionPrinter : CpSolverSolutionCallback { public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts, Dictionary<(int, int, int), BoolVar> shifts, int limit) { solutionCount_ = 0; allNurses_ = allNurses; allDays_ = allDays; allShifts_ = allShifts; shifts_ = shifts; solutionLimit_ = limit; } public override void OnSolutionCallback() { Console.WriteLine($"Solution #{solutionCount_}:"); foreach (int d in allDays_) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses_) { bool isWorking = false; foreach (int s in allShifts_) { if (Value(shifts_[(n, d, s)]) == 1L) { isWorking = true; Console.WriteLine($" Nurse {n} work shift {s}"); } } if (!isWorking) { Console.WriteLine($" Nurse {d} does not work"); } } } solutionCount_++; if (solutionCount_ >= solutionLimit_) { Console.WriteLine($"Stop search after {solutionLimit_} solutions"); StopSearch(); } } public int SolutionCount() { return solutionCount_; } private int solutionCount_; private int[] allNurses_; private int[] allDays_; private int[] allShifts_; private Dictionary<(int, int, int), BoolVar> shifts_; private int solutionLimit_; }তারপর এটি ব্যবহার করে তাৎক্ষণিক করুন:
const int solutionLimit = 5; SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit);
সমাধানকারীকে আহ্বান করুন
নিম্নলিখিত কোডটি সমাধানকারীকে কল করে এবং প্রথম পাঁচটি সমাধান প্রদর্শন করে।
পাইথন
solver.solve(model, solution_printer)
সি++
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
জাভা
CpSolverStatus status = solver.solve(model, cb); System.out.println("Status: " + status); System.out.println(cb.getSolutionCount() + " solutions found.");
সি#
CpSolverStatus status = solver.Solve(model, cb); Console.WriteLine($"Solve status: {status}");
সমাধান
এখানে প্রথম পাঁচটি সমাধান রয়েছে।
Solution 0
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 1
Day 0
Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 does not work
Nurse 1 works shift 2
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 2
Day 0 Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 3
Day 0 Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 4
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Statistics
- conflicts : 5
- branches : 142
- wall time : 0.002484 s
- solutions found: 5
সমাধানের মোট সংখ্যা হল 5184। নিম্নলিখিত গণনা যুক্তি ব্যাখ্যা করে কেন।
প্রথমত, একজন নার্সের জন্য 4টি পছন্দ আছে যারা অতিরিক্ত শিফটে কাজ করে। সেই নার্সকে বেছে নেওয়ার পর, নার্সকে 3 দিনের প্রতিটিতে 3টি শিফটে বরাদ্দ করা যেতে পারে, তাই অতিরিক্ত শিফটের সাথে নার্সকে বরাদ্দ করার সম্ভাব্য উপায়ের সংখ্যা হল 4 · 3 3 = 108৷ এই নার্স নিয়োগের পরে, সেখানে প্রতিটি দিন বাকি দুটি আনঅ্যাসাইন করা শিফট।
বাকি তিনজন নার্সের মধ্যে একজন কাজের দিন 0 এবং 1, একজন কাজের দিন 0 এবং 2, এবং একজন কাজের দিন 1 এবং 2। আছে 3! এই দিনগুলিতে নার্সদের বরাদ্দ করার 6 টি উপায়, যেমনটি নীচের চিত্রে দেখানো হয়েছে। (তিনজন নার্সকে A, B, এবং C লেবেল করা হয়েছে এবং আমরা এখনও তাদের শিফটে নিয়োগ করিনি।)
Day 0 Day 1 Day 2
A B A C B C
A B B C A C
A C A B B C
A C B C A B
B C A B A C
B C A C A B
উপরের ডায়াগ্রামে প্রতিটি সারির জন্য, নার্সদের অবশিষ্ট স্থানান্তরগুলি বরাদ্দ করার জন্য 2 3 = 8 সম্ভাব্য উপায় রয়েছে (প্রতিটি দিনে দুটি পছন্দ)। সুতরাং সম্ভাব্য নিয়োগের মোট সংখ্যা হল 108·6·8 = 5184।
পুরো প্রোগ্রাম
এখানে নার্স সময়সূচী সমস্যা জন্য সম্পূর্ণ প্রোগ্রাম.
পাইথন
"""Example of a simple nurse scheduling problem.""" from ortools.sat.python import cp_model def main() -> None: # Data. num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) # Creates the model. model = cp_model.CpModel() # Creates shift variables. # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}") # Each shift is assigned to exactly one nurse in the schedule period. for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses) # Each nurse works at most one shift per day. for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts) # Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: shifts_worked = [] for d in all_days: for s in all_shifts: shifts_worked.append(shifts[(n, d, s)]) model.add(min_shifts_per_nurse <= sum(shifts_worked)) model.add(sum(shifts_worked) <= max_shifts_per_nurse) # Creates the solver and solve. solver = cp_model.CpSolver() solver.parameters.linearization_level = 0 # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, shifts, num_nurses, num_days, num_shifts, limit): cp_model.CpSolverSolutionCallback.__init__(self) self._shifts = shifts self._num_nurses = num_nurses self._num_days = num_days self._num_shifts = num_shifts self._solution_count = 0 self._solution_limit = limit def on_solution_callback(self): self._solution_count += 1 print(f"Solution {self._solution_count}") for d in range(self._num_days): print(f"Day {d}") for n in range(self._num_nurses): is_working = False for s in range(self._num_shifts): if self.value(self._shifts[(n, d, s)]): is_working = True print(f" Nurse {n} works shift {s}") if not is_working: print(f" Nurse {n} does not work") if self._solution_count >= self._solution_limit: print(f"Stop search after {self._solution_limit} solutions") self.stop_search() def solutionCount(self): return self._solution_count # Display the first five solutions. solution_limit = 5 solution_printer = NursesPartialSolutionPrinter( shifts, num_nurses, num_days, num_shifts, solution_limit ) solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" - conflicts : {solver.num_conflicts}") print(f" - branches : {solver.num_branches}") print(f" - wall time : {solver.wall_time} s") print(f" - solutions found: {solution_printer.solutionCount()}") if __name__ == "__main__": main()
সি++
// Example of a simple nurse scheduling problem. #include <stdlib.h> #include <atomic> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/time_limit.h" namespace operations_research { namespace sat { void NurseSat() { const int num_nurses = 4; const int num_shifts = 3; const int num_days = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); // Creates the model. CpModelBuilder cp_model; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { std::vector<BoolVar> shifts_worked; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts_worked.push_back(shifts[key]); } } cp_model.AddLessOrEqual(min_shifts_per_nurse, LinearExpr::Sum(shifts_worked)); cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked), max_shifts_per_nurse); } Model model; SatParameters parameters; parameters.set_linearization_level(0); // Enumerate all solutions. parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); // Display the first five solutions. // Create an atomic Boolean that will be periodically checked by the limit. std::atomic<bool> stopped(false); model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped); const int kSolutionLimit = 5; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { bool is_working = false; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(r, shifts[key])) { is_working = true; LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s); } } if (!is_working) { LOG(INFO) << " Nurse " << std::to_string(n) << " does not work"; } } } num_solutions++; if (num_solutions >= kSolutionLimit) { stopped = true; LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions."; } })); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); LOG(INFO) << "solutions found : " << std::to_string(num_solutions); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::NurseSat(); return EXIT_SUCCESS; }
জাভা
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Nurses problem. */ public class NursesSat { public static void main(String[] args) { Loader.loadNativeLibraries(); final int numNurses = 4; final int numDays = 3; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder shiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { shiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); } CpSolver solver = new CpSolver(); solver.getParameters().setLinearizationLevel(0); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // Display the first five solutions. final int solutionLimit = 5; class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback { public VarArraySolutionPrinterWithLimit( int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) { solutionCount = 0; this.allNurses = allNurses; this.allDays = allDays; this.allShifts = allShifts; this.shifts = shifts; solutionLimit = limit; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d:%n", solutionCount); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { boolean isWorking = false; for (int s : allShifts) { if (booleanValue(shifts[n][d][s])) { isWorking = true; System.out.printf(" Nurse %d work shift %d%n", n, s); } } if (!isWorking) { System.out.printf(" Nurse %d does not work%n", n); } } } solutionCount++; if (solutionCount >= solutionLimit) { System.out.printf("Stop search after %d solutions%n", solutionLimit); stopSearch(); } } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final int[] allNurses; private final int[] allDays; private final int[] allShifts; private final Literal[][][] shifts; private final int solutionLimit; } VarArraySolutionPrinterWithLimit cb = new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit); // Creates a solver and solves the model. CpSolverStatus status = solver.solve(model, cb); System.out.println("Status: " + status); System.out.println(cb.getSolutionCount() + " solutions found."); // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private NursesSat() {} }
সি#
using System; using System.Collections.Generic; using System.IO; using System.Linq; using Google.OrTools.Sat; public class NursesSat { public class SolutionPrinter : CpSolverSolutionCallback { public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts, Dictionary<(int, int, int), BoolVar> shifts, int limit) { solutionCount_ = 0; allNurses_ = allNurses; allDays_ = allDays; allShifts_ = allShifts; shifts_ = shifts; solutionLimit_ = limit; } public override void OnSolutionCallback() { Console.WriteLine($"Solution #{solutionCount_}:"); foreach (int d in allDays_) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses_) { bool isWorking = false; foreach (int s in allShifts_) { if (Value(shifts_[(n, d, s)]) == 1L) { isWorking = true; Console.WriteLine($" Nurse {n} work shift {s}"); } } if (!isWorking) { Console.WriteLine($" Nurse {d} does not work"); } } } solutionCount_++; if (solutionCount_ >= solutionLimit_) { Console.WriteLine($"Stop search after {solutionLimit_} solutions"); StopSearch(); } } public int SolutionCount() { return solutionCount_; } private int solutionCount_; private int[] allNurses_; private int[] allDays_; private int[] allShifts_; private Dictionary<(int, int, int), BoolVar> shifts_; private int solutionLimit_; } public static void Main(String[] args) { const int numNurses = 4; const int numDays = 3; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); // Creates the model. CpModel model = new CpModel(); model.Model.Variables.Capacity = numNurses * numDays * numShifts; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Dictionary<(int, int, int), BoolVar> shifts = new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } } // Each shift is assigned to exactly one nurse in the schedule period. List<ILiteral> literals = new List<ILiteral>(); foreach (int d in allDays) { foreach (int s in allShifts) { foreach (int n in allNurses) { literals.Add(shifts[(n, d, s)]); } model.AddExactlyOne(literals); literals.Clear(); } } // Each nurse works at most one shift per day. foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { literals.Add(shifts[(n, d, s)]); } model.AddAtMostOne(literals); literals.Clear(); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } List<IntVar> shiftsWorked = new List<IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shiftsWorked.Add(shifts[(n, d, s)]); } } model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); shiftsWorked.Clear(); } CpSolver solver = new CpSolver(); // Tell the solver to enumerate all solutions. solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true "; // Display the first five solutions. const int solutionLimit = 5; SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit); // Solve CpSolverStatus status = solver.Solve(model, cb); Console.WriteLine($"Solve status: {status}"); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }
শিফট অনুরোধের সঙ্গে সময়সূচী
এই বিভাগে, আমরা পূর্ববর্তী উদাহরণ গ্রহণ করি এবং নির্দিষ্ট স্থানান্তরের জন্য নার্সের অনুরোধ যোগ করি। তারপরে আমরা একটি সময়সূচী সন্ধান করি যা পূরণ করা অনুরোধের সংখ্যাকে সর্বাধিক করে। বেশিরভাগ সময়সূচী সমস্যার জন্য, একটি উদ্দেশ্যমূলক ফাংশন অপ্টিমাইজ করা সর্বোত্তম, কারণ সমস্ত সম্ভাব্য সময়সূচী মুদ্রণ করা সাধারণত ব্যবহারিক নয়।
এই উদাহরণে আগের উদাহরণের মতো একই সীমাবদ্ধতা রয়েছে।
লাইব্রেরি আমদানি করুন
নিম্নলিখিত কোড প্রয়োজনীয় লাইব্রেরি আমদানি করে।
পাইথন
from typing import Union from ortools.sat.python import cp_model
সি++
#include <stdlib.h> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
জাভা
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
সি#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat;
উদাহরণের জন্য ডেটা
এই উদাহরণের জন্য ডেটা পরে দেখানো হয়.
পাইথন
num_nurses = 5 num_shifts = 3 num_days = 7 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) shift_requests = [ [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]], [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]], ]
সি++
const int num_nurses = 5; const int num_days = 7; const int num_shifts = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<std::vector<std::vector<int64_t>>> shift_requests = { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, };
জাভা
final int numNurses = 5; final int numDays = 7; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); final int[][][] shiftRequests = new int[][][] { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, };
সি#
const int numNurses = 5; const int numDays = 7; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); int[,,] shiftRequests = new int[,,] { { { 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 1 }, }, { { 0, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 1, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, }, { { 0, 1, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, { { 0, 0, 1 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, }, { { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, };
মডেল তৈরি করুন
নিম্নলিখিত কোড মডেল তৈরি করে।
পাইথন
model = cp_model.CpModel()
সি++
CpModelBuilder cp_model;
জাভা
CpModel model = new CpModel();
সি#
CpModel model = new CpModel();
ভেরিয়েবল তৈরি করুন
নিম্নলিখিত কোড সমস্যাটির জন্য ভেরিয়েবলের একটি অ্যারে।
আগের উদাহরণের ভেরিয়েবলগুলি ছাড়াও, ডেটাতে ট্রিপলের একটি সেটও রয়েছে, যা প্রতিদিনের তিনটি শিফটের সাথে সম্পর্কিত। ট্রিপলের প্রতিটি উপাদান হল 0 বা 1, নির্দেশ করে যে একটি শিফটের অনুরোধ করা হয়েছে কিনা। উদাহরণস্বরূপ, সারির 1 এর পঞ্চম অবস্থানে ট্রিপল [0, 0, 1] নির্দেশ করে যে নার্স 1 5 তম দিনে 3 শিফট করার অনুরোধ করে।
পাইথন
shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")
সি++
std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } }
জাভা
Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } }
সি#
Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } }
সীমাবদ্ধতা তৈরি করুন
নিম্নলিখিত কোড সমস্যার জন্য সীমাবদ্ধতা তৈরি করে।
পাইথন
for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)
সি++
for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } }
জাভা
for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } }
সি#
foreach (int d in allDays) { foreach (int s in allShifts) { IntVar[] x = new IntVar[numNurses]; foreach (int n in allNurses) { var key = Tuple.Create(n, d, s); x[n] = shifts[key]; } model.Add(LinearExpr.Sum(x) == 1); } }
পাইথন
for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)
সি++
for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } }
জাভা
for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } }
সি#
foreach (int n in allNurses) { foreach (int d in allDays) { IntVar[] x = new IntVar[numShifts]; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); x[s] = shifts[key]; } model.Add(LinearExpr.Sum(x) <= 1); } }
পাইথন
# Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: num_shifts_worked: Union[cp_model.LinearExpr, int] = 0 for d in all_days: for s in all_shifts: num_shifts_worked += shifts[(n, d, s)] model.add(min_shifts_per_nurse <= num_shifts_worked) model.add(num_shifts_worked <= max_shifts_per_nurse)
সি++
// Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { LinearExpr num_worked_shifts; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); num_worked_shifts += shifts[key]; } } cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts); cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse); }
জাভা
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { numShiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); }
সি#
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } foreach (int n in allNurses) { IntVar[] numShiftsWorked = new IntVar[numDays * numShifts]; foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); numShiftsWorked[d * numShifts + s] = shifts[key]; } } model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); }
উদাহরণ জন্য উদ্দেশ্য
আমরা নিম্নলিখিত উদ্দেশ্য ফাংশন অপ্টিমাইজ করতে চাই.
পাইথন
model.maximize( sum( shift_requests[n][d][s] * shifts[(n, d, s)] for n in all_nurses for d in all_days for s in all_shifts ) )
সি++
LinearExpr objective_expr; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { if (shift_requests[n][d][s] == 1) { auto key = std::make_tuple(n, d, s); objective_expr += shifts[key] * shift_requests[n][d][s]; } } } } cp_model.Maximize(objective_expr);
জাভা
LinearExprBuilder obj = LinearExpr.newBuilder(); for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]); } } } model.maximize(obj);
সি#
IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts]; int[] flatShiftRequests = new int[numNurses * numDays * numShifts]; foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key]; flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s]; } } } model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests));
যেহেতু shift_requests[n][d][s] * shifts[(n, d, s)
হয় 1 যদি s শিফট s
নার্স n
কে d
দিনে বরাদ্দ করা হয় এবং সেই নার্স শিফট করার জন্য অনুরোধ করেছিল (এবং অন্যথায় 0), উদ্দেশ্য হল অ্যাসাইনমেন্টের সংখ্যা শিফট যা একটি অনুরোধ পূরণ করে।
সমাধানকারীকে আহ্বান করুন
নিম্নলিখিত কোড সমাধানকারী কল.
পাইথন
solver = cp_model.CpSolver() status = solver.solve(model)
সি++
const CpSolverResponse response = Solve(cp_model.Build());
জাভা
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
সি#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
ফলাফল প্রদর্শন করুন
নিম্নলিখিত কোড নিম্নলিখিত আউটপুট প্রদর্শন করে, যা একটি সর্বোত্তম সময়সূচী ধারণ করে (যদিও সম্ভবত একমাত্র নয়)। আউটপুট দেখায় কোন শিফট অ্যাসাইনমেন্টের জন্য অনুরোধ করা হয়েছে এবং কতটি অনুরোধ পূরণ করা হয়েছে।
পাইথন
if status == cp_model.OPTIMAL: print("Solution:") for d in all_days: print("Day", d) for n in all_nurses: for s in all_shifts: if solver.value(shifts[(n, d, s)]) == 1: if shift_requests[n][d][s] == 1: print("Nurse", n, "works shift", s, "(requested).") else: print("Nurse", n, "works shift", s, "(not requested).") print() print( f"Number of shift requests met = {solver.objective_value}", f"(out of {num_nurses * min_shifts_per_nurse})", ) else: print("No optimal solution found !")
সি++
if (response.status() == CpSolverStatus::OPTIMAL) { LOG(INFO) << "Solution:"; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(response, shifts[key]) == 1) { if (shift_requests[n][d][s] == 1) { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (requested)."; } else { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (not requested)."; } } } } LOG(INFO) << ""; } LOG(INFO) << "Number of shift requests met = " << response.objective_value() << " (out of " << num_nurses * min_shifts_per_nurse << ")"; } else { LOG(INFO) << "No optimal solution found !"; }
জাভা
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Solution:%n"); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { for (int s : allShifts) { if (solver.booleanValue(shifts[n][d][s])) { if (shiftRequests[n][d][s] == 1) { System.out.printf(" Nurse %d works shift %d (requested).%n", n, s); } else { System.out.printf(" Nurse %d works shift %d (not requested).%n", n, s); } } } } } System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(), numNurses * minShiftsPerNurse); } else { System.out.printf("No optimal solution found !"); }
সি#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); foreach (int d in allDays) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses) { bool isWorking = false; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); if (solver.Value(shifts[key]) == 1L) { if (shiftRequests[n, d, s] == 1) { Console.WriteLine($" Nurse {n} work shift {s} (requested)."); } else { Console.WriteLine($" Nurse {n} work shift {s} (not requested)."); } } } } } Console.WriteLine( $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse})."); } else { Console.WriteLine("No solution found."); }
আপনি যখন প্রোগ্রাম চালান, এটি নিম্নলিখিত আউটপুট প্রদর্শন করে:
Day 0
Nurse 1 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 2 (requested).
Day 1
Nurse 0 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 4 works shift 2 (requested).
Day 2
Nurse 1 works shift 2 (not requested).
Nurse 3 works shift 0 (requested).
Nurse 4 works shift 1 (requested).
Day 3
Nurse 2 works shift 0 (requested).
Nurse 3 works shift 1 (requested).
Nurse 4 works shift 2 (not requested).
Day 4
Nurse 0 works shift 2 (requested).
Nurse 1 works shift 0 (requested).
Nurse 4 works shift 1 (not requested).
Day 5
Nurse 0 works shift 2 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 0 (requested).
Day 6
Nurse 0 works shift 1 (not requested).
Nurse 1 works shift 2 (requested).
Nurse 4 works shift 0 (not requested).
Statistics
- Number of shift requests met = 13 (out of 20 )
- wall time : 0.003571 s
পুরো প্রোগ্রাম
শিফ্ট অনুরোধের সাথে সময়সূচী করার জন্য এখানে সম্পূর্ণ প্রোগ্রাম রয়েছে।
পাইথন
"""Nurse scheduling problem with shift requests.""" from typing import Union from ortools.sat.python import cp_model def main() -> None: # This program tries to find an optimal assignment of nurses to shifts # (3 shifts per day, for 7 days), subject to some constraints (see below). # Each nurse can request to be assigned to specific shifts. # The optimal assignment maximizes the number of fulfilled shift requests. num_nurses = 5 num_shifts = 3 num_days = 7 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) shift_requests = [ [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]], [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]], ] # Creates the model. model = cp_model.CpModel() # Creates shift variables. # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}") # Each shift is assigned to exactly one nurse in . for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses) # Each nurse works at most one shift per day. for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts) # Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: num_shifts_worked: Union[cp_model.LinearExpr, int] = 0 for d in all_days: for s in all_shifts: num_shifts_worked += shifts[(n, d, s)] model.add(min_shifts_per_nurse <= num_shifts_worked) model.add(num_shifts_worked <= max_shifts_per_nurse) model.maximize( sum( shift_requests[n][d][s] * shifts[(n, d, s)] for n in all_nurses for d in all_days for s in all_shifts ) ) # Creates the solver and solve. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL: print("Solution:") for d in all_days: print("Day", d) for n in all_nurses: for s in all_shifts: if solver.value(shifts[(n, d, s)]) == 1: if shift_requests[n][d][s] == 1: print("Nurse", n, "works shift", s, "(requested).") else: print("Nurse", n, "works shift", s, "(not requested).") print() print( f"Number of shift requests met = {solver.objective_value}", f"(out of {num_nurses * min_shifts_per_nurse})", ) else: print("No optimal solution found !") # Statistics. print("\nStatistics") print(f" - conflicts: {solver.num_conflicts}") print(f" - branches : {solver.num_branches}") print(f" - wall time: {solver.wall_time}s") if __name__ == "__main__": main()
সি++
// Nurse scheduling problem with shift requests. #include <stdlib.h> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void ScheduleRequestsSat() { const int num_nurses = 5; const int num_days = 7; const int num_shifts = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<std::vector<std::vector<int64_t>>> shift_requests = { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, }; // Creates the model. CpModelBuilder cp_model; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { LinearExpr num_worked_shifts; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); num_worked_shifts += shifts[key]; } } cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts); cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse); } LinearExpr objective_expr; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { if (shift_requests[n][d][s] == 1) { auto key = std::make_tuple(n, d, s); objective_expr += shifts[key] * shift_requests[n][d][s]; } } } } cp_model.Maximize(objective_expr); const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL) { LOG(INFO) << "Solution:"; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(response, shifts[key]) == 1) { if (shift_requests[n][d][s] == 1) { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (requested)."; } else { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (not requested)."; } } } } LOG(INFO) << ""; } LOG(INFO) << "Number of shift requests met = " << response.objective_value() << " (out of " << num_nurses * min_shifts_per_nurse << ")"; } else { LOG(INFO) << "No optimal solution found !"; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::ScheduleRequestsSat(); return EXIT_SUCCESS; }
জাভা
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Nurses problem with schedule requests. */ public class ScheduleRequestsSat { public static void main(String[] args) { Loader.loadNativeLibraries(); final int numNurses = 5; final int numDays = 7; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); final int[][][] shiftRequests = new int[][][] { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, }; // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { numShiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); } LinearExprBuilder obj = LinearExpr.newBuilder(); for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]); } } } model.maximize(obj); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Solution:%n"); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { for (int s : allShifts) { if (solver.booleanValue(shifts[n][d][s])) { if (shiftRequests[n][d][s] == 1) { System.out.printf(" Nurse %d works shift %d (requested).%n", n, s); } else { System.out.printf(" Nurse %d works shift %d (not requested).%n", n, s); } } } } } System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(), numNurses * minShiftsPerNurse); } else { System.out.printf("No optimal solution found !"); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private ScheduleRequestsSat() {} }
সি#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat; public class ScheduleRequestsSat { public static void Main(String[] args) { const int numNurses = 5; const int numDays = 7; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); int[,,] shiftRequests = new int[,,] { { { 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 1 }, }, { { 0, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 1, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, }, { { 0, 1, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, { { 0, 0, 1 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, }, { { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, }; // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } } // Each shift is assigned to exactly one nurse in the schedule period. foreach (int d in allDays) { foreach (int s in allShifts) { IntVar[] x = new IntVar[numNurses]; foreach (int n in allNurses) { var key = Tuple.Create(n, d, s); x[n] = shifts[key]; } model.Add(LinearExpr.Sum(x) == 1); } } // Each nurse works at most one shift per day. foreach (int n in allNurses) { foreach (int d in allDays) { IntVar[] x = new IntVar[numShifts]; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); x[s] = shifts[key]; } model.Add(LinearExpr.Sum(x) <= 1); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } foreach (int n in allNurses) { IntVar[] numShiftsWorked = new IntVar[numDays * numShifts]; foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); numShiftsWorked[d * numShifts + s] = shifts[key]; } } model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); } IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts]; int[] flatShiftRequests = new int[numNurses * numDays * numShifts]; foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key]; flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s]; } } } model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests)); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); foreach (int d in allDays) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses) { bool isWorking = false; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); if (solver.Value(shifts[key]) == 1L) { if (shiftRequests[n, d, s] == 1) { Console.WriteLine($" Nurse {n} work shift {s} (requested)."); } else { Console.WriteLine($" Nurse {n} work shift {s} (not requested)."); } } } } } Console.WriteLine( $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse})."); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }