Le organizzazioni i cui dipendenti lavorano su più turni devono programmare una pianificazione sufficiente lavoratori per ogni turno giornaliero. In genere, le pianificazioni hanno dei vincoli, ad esempio "nessun dipendente dovrebbe lavorare due turni di fila". Trovare una programmazione che soddisfa tutti i vincoli può essere difficile dal punto di vista computazionale.
Le seguenti sezioni presentano due esempi di problemi di pianificazione dei dipendenti. mostrare come risolverle con il risolutore CP-SAT.
Per un esempio più sofisticato, vedi questo programma di programmazione turni su GitHub.
Un problema di pianificazione infermieristica
Nel prossimo esempio, un supervisore dell'ospedale deve creare un programma per quattro infermieri per un periodo di tre giorni, alle seguenti condizioni:
- Ogni giorno è suddiviso in tre turni di 8 ore.
- Ogni giorno, ogni turno è assegnato a un solo infermiere e nessun infermiere lavora di più di un turno.
- A ogni infermiere vengono assegnati almeno due turni durante il periodo di tre giorni.
Le sezioni seguenti presentano una soluzione al problema della programmazione infermieristica.
Importa le librerie
Il codice seguente importa la libreria richiesta.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <atomic> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/time_limit.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using System.IO; using System.Linq; using Google.OrTools.Sat;
Dati per l'esempio
Il codice seguente crea i dati per l'esempio.
Python
num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days)
C++
const int num_nurses = 4; const int num_shifts = 3; const int num_days = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0);
Java
final int numNurses = 4; final int numDays = 3; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray();
C#
const int numNurses = 4; const int numDays = 3; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray();
crea il modello
Il codice seguente crea il modello.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel(); model.Model.Variables.Capacity = numNurses * numDays * numShifts;
Crea le variabili
Il codice seguente crea un array di variabili.
Python
shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")
C++
std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } }
Java
Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } }
C#
Dictionary<(int, int, int), BoolVar> shifts = new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } }
L'array definisce le assegnazioni per i turni agli infermieri nel seguente modo:
shifts[(n, d, s)]
equivale a 1 se il turno s è assegnato all'infermiere n il giorno d e 0
negli altri casi.
Assegna infermieri ai turni
Adesso mostriamo come assegnare gli infermieri a turni soggetti ai seguenti vincoli:
- Ogni turno è assegnato a un solo infermiere al giorno.
- Ogni infermiere lavora al massimo un turno al giorno.
Ecco il codice che crea la prima condizione.
Python
for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)
C++
for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } }
Java
for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } }
C#
List<ILiteral> literals = new List<ILiteral>(); foreach (int d in allDays) { foreach (int s in allShifts) { foreach (int n in allNurses) { literals.Add(shifts[(n, d, s)]); } model.AddExactlyOne(literals); literals.Clear(); } }
L'ultima riga indica che, per ogni turno, la somma degli infermieri assegnati tra maiuscole e minuscole è 1.
Ecco il codice che richiede che ogni infermiere lavori al massimo un turno per giorno.
Python
for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)
C++
for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } }
Java
for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } }
C#
foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { literals.Add(shifts[(n, d, s)]); } model.AddAtMostOne(literals); literals.Clear(); } }
Per ogni infermiere, la somma dei turni assegnati è al massimo 1 ("al massimo" perché un'infermiera potrebbe avere il giorno libero).
Assegna le variazioni in modo uniforme
Successivamente, mostriamo come assegnare i turni agli infermieri nel modo più uniforme possibile. Poiché ci sono nove turni in un periodo di tre giorni, possiamo assegnare due turni a ognuno dei quattro infermieri. Dopodiché ci sarà un solo turno rimasto, che può essere assegnato a qualsiasi infermiere.
Il seguente codice assicura che ogni infermiere esegua almeno due turni di per un periodo di tre giorni.
Python
# Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: shifts_worked = [] for d in all_days: for s in all_shifts: shifts_worked.append(shifts[(n, d, s)]) model.add(min_shifts_per_nurse <= sum(shifts_worked)) model.add(sum(shifts_worked) <= max_shifts_per_nurse)
C++
// Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { std::vector<BoolVar> shifts_worked; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts_worked.push_back(shifts[key]); } } cp_model.AddLessOrEqual(min_shifts_per_nurse, LinearExpr::Sum(shifts_worked)); cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked), max_shifts_per_nurse); }
Java
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder shiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { shiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); }
C#
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } List<IntVar> shiftsWorked = new List<IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shiftsWorked.Add(shifts[(n, d, s)]); } } model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); shiftsWorked.Clear(); }
Poiché ci sono num_shifts * num_days
adattamenti totali nel periodo di programmazione,
può assegnare almeno (num_shifts * num_days) // num_nurses
turni per ogni infermiere, ma alcuni turni possono essere rimasti. (Qui //
è il file Python
operatore di divisione di numeri interi, che restituisce il prezzo minimo del quoziente abituale.
Per i valori specificati di num_nurses = 4
, num_shifts = 3
e num_days = 3
,
l'espressione min_shifts_per_nurse
ha il valore (3 * 3 // 4) = 2
, quindi
assegnare almeno due turni a ogni infermiere. Questo valore è specificato
vincolo (qui in Python)
model.add(min_shifts_per_nurse <= sum(shifts_worked))
Dal momento che ci sono nove turni totali in un periodo di tre giorni, c'è uno turno rimanente dopo aver assegnato due turni a ciascun infermiere. Lo scostamento aggiuntivo può essere assegnato a un infermiere.
L'ultima riga (qui in Python)
model.add(sum(shifts_worked) <= max_shifts_per_nurse)
assicura che a nessun infermiere venga assegnato più di un turno in più.
In questo caso il vincolo non è necessario perché c'è solo un altro maiusc. Tuttavia, per valori di parametri diversi, potrebbero esserci diverse variazioni extra, in questo caso il vincolo è necessario.
Aggiorna parametri del risolutore
In un modello non di ottimizzazione, puoi abilitare la ricerca di tutte le soluzioni.
Python
solver = cp_model.CpSolver() solver.parameters.linearization_level = 0 # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True
C++
Model model; SatParameters parameters; parameters.set_linearization_level(0); // Enumerate all solutions. parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters));
Java
CpSolver solver = new CpSolver(); solver.getParameters().setLinearizationLevel(0); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true);
C#
CpSolver solver = new CpSolver(); // Tell the solver to enumerate all solutions. solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true ";
Registra un callback di Solutions
Devi registrare un callback sul risolutore che verrà chiamato a ogni soluzione.
Python
class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, shifts, num_nurses, num_days, num_shifts, limit): cp_model.CpSolverSolutionCallback.__init__(self) self._shifts = shifts self._num_nurses = num_nurses self._num_days = num_days self._num_shifts = num_shifts self._solution_count = 0 self._solution_limit = limit def on_solution_callback(self): self._solution_count += 1 print(f"Solution {self._solution_count}") for d in range(self._num_days): print(f"Day {d}") for n in range(self._num_nurses): is_working = False for s in range(self._num_shifts): if self.value(self._shifts[(n, d, s)]): is_working = True print(f" Nurse {n} works shift {s}") if not is_working: print(f" Nurse {n} does not work") if self._solution_count >= self._solution_limit: print(f"Stop search after {self._solution_limit} solutions") self.stop_search() def solutionCount(self): return self._solution_count # Display the first five solutions. solution_limit = 5 solution_printer = NursesPartialSolutionPrinter( shifts, num_nurses, num_days, num_shifts, solution_limit )
C++
// Create an atomic Boolean that will be periodically checked by the limit. std::atomic<bool> stopped(false); model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped); const int kSolutionLimit = 5; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { bool is_working = false; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(r, shifts[key])) { is_working = true; LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s); } } if (!is_working) { LOG(INFO) << " Nurse " << std::to_string(n) << " does not work"; } } } num_solutions++; if (num_solutions >= kSolutionLimit) { stopped = true; LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions."; } }));
Java
final int solutionLimit = 5; class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback { public VarArraySolutionPrinterWithLimit( int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) { solutionCount = 0; this.allNurses = allNurses; this.allDays = allDays; this.allShifts = allShifts; this.shifts = shifts; solutionLimit = limit; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d:%n", solutionCount); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { boolean isWorking = false; for (int s : allShifts) { if (booleanValue(shifts[n][d][s])) { isWorking = true; System.out.printf(" Nurse %d work shift %d%n", n, s); } } if (!isWorking) { System.out.printf(" Nurse %d does not work%n", n); } } } solutionCount++; if (solutionCount >= solutionLimit) { System.out.printf("Stop search after %d solutions%n", solutionLimit); stopSearch(); } } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final int[] allNurses; private final int[] allDays; private final int[] allShifts; private final Literal[][][] shifts; private final int solutionLimit; } VarArraySolutionPrinterWithLimit cb = new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit);
C#
Definisci innanzitutto la classe SolutionPrinter
.
public class SolutionPrinter : CpSolverSolutionCallback { public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts, Dictionary<(int, int, int), BoolVar> shifts, int limit) { solutionCount_ = 0; allNurses_ = allNurses; allDays_ = allDays; allShifts_ = allShifts; shifts_ = shifts; solutionLimit_ = limit; } public override void OnSolutionCallback() { Console.WriteLine($"Solution #{solutionCount_}:"); foreach (int d in allDays_) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses_) { bool isWorking = false; foreach (int s in allShifts_) { if (Value(shifts_[(n, d, s)]) == 1L) { isWorking = true; Console.WriteLine($" Nurse {n} work shift {s}"); } } if (!isWorking) { Console.WriteLine($" Nurse {d} does not work"); } } } solutionCount_++; if (solutionCount_ >= solutionLimit_) { Console.WriteLine($"Stop search after {solutionLimit_} solutions"); StopSearch(); } } public int SolutionCount() { return solutionCount_; } private int solutionCount_; private int[] allNurses_; private int[] allDays_; private int[] allShifts_; private Dictionary<(int, int, int), BoolVar> shifts_; private int solutionLimit_; }Quindi crea un'istanza utilizzando:
const int solutionLimit = 5; SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit);
Richiama il risolutore
Il codice riportato di seguito chiama il risolutore e mostra le prime cinque soluzioni.
Python
solver.solve(model, solution_printer)
C++
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
Java
CpSolverStatus status = solver.solve(model, cb); System.out.println("Status: " + status); System.out.println(cb.getSolutionCount() + " solutions found.");
C#
CpSolverStatus status = solver.Solve(model, cb); Console.WriteLine($"Solve status: {status}");
Soluzioni
Ecco le prime cinque soluzioni.
Solution 0
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 1
Day 0
Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 does not work
Nurse 1 works shift 2
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 2
Day 0 Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 3
Day 0 Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Solution 4
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work
Statistics
- conflicts : 5
- branches : 142
- wall time : 0.002484 s
- solutions found: 5
Il numero totale di soluzioni è 5184. Il seguente argomento di conteggio spiega il motivo.
In primo luogo, ci sono 4 scelte per l'infermiera che lavora un turno extra. Dopo aver scelto l'infermiere, ci sono 3 turni a cui può essere assegnato l'infermiere per ciascuno dei 3 giorni, quindi il numero dei modi possibili per assegnare all'infermiere lo spostamento aggiuntivo è 4 · 33 = 108. Dopo aver assegnato questo infermiere, rimangono due turni non assegnati ogni giorno.
Dei restanti tre infermieri, uno lavora i giorni 0 e 1, uno lavora i giorni 0 e 2, e uno funziona nei giorni 1 e 2. Ce ne sono 3. = 6 modi per assegnare gli infermieri a questi giorni, come mostrato diagramma seguente. (Le tre infermiere sono contrassegnate con le lettere A, B e C e non abbiamo ancora assegnati a turni).
Day 0 Day 1 Day 2
A B A C B C
A B B C A C
A C A B B C
A C B C A B
B C A B A C
B C A C A B
Per ogni riga nel diagramma sopra, ci sono 23 = 8 possibili modi per assegnare i restanti turni agli infermieri (due scelte al giorno). Quindi il numero totale di assegnazioni possibili è 108·6·8 = 5184.
Intero programma
Ecco l'intero programma per il problema della programmazione infermieristica.
Python
"""Example of a simple nurse scheduling problem.""" from ortools.sat.python import cp_model def main() -> None: # Data. num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) # Creates the model. model = cp_model.CpModel() # Creates shift variables. # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}") # Each shift is assigned to exactly one nurse in the schedule period. for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses) # Each nurse works at most one shift per day. for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts) # Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: shifts_worked = [] for d in all_days: for s in all_shifts: shifts_worked.append(shifts[(n, d, s)]) model.add(min_shifts_per_nurse <= sum(shifts_worked)) model.add(sum(shifts_worked) <= max_shifts_per_nurse) # Creates the solver and solve. solver = cp_model.CpSolver() solver.parameters.linearization_level = 0 # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, shifts, num_nurses, num_days, num_shifts, limit): cp_model.CpSolverSolutionCallback.__init__(self) self._shifts = shifts self._num_nurses = num_nurses self._num_days = num_days self._num_shifts = num_shifts self._solution_count = 0 self._solution_limit = limit def on_solution_callback(self): self._solution_count += 1 print(f"Solution {self._solution_count}") for d in range(self._num_days): print(f"Day {d}") for n in range(self._num_nurses): is_working = False for s in range(self._num_shifts): if self.value(self._shifts[(n, d, s)]): is_working = True print(f" Nurse {n} works shift {s}") if not is_working: print(f" Nurse {n} does not work") if self._solution_count >= self._solution_limit: print(f"Stop search after {self._solution_limit} solutions") self.stop_search() def solutionCount(self): return self._solution_count # Display the first five solutions. solution_limit = 5 solution_printer = NursesPartialSolutionPrinter( shifts, num_nurses, num_days, num_shifts, solution_limit ) solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" - conflicts : {solver.num_conflicts}") print(f" - branches : {solver.num_branches}") print(f" - wall time : {solver.wall_time} s") print(f" - solutions found: {solution_printer.solutionCount()}") if __name__ == "__main__": main()
C++
// Example of a simple nurse scheduling problem. #include <stdlib.h> #include <atomic> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/time_limit.h" namespace operations_research { namespace sat { void NurseSat() { const int num_nurses = 4; const int num_shifts = 3; const int num_days = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); // Creates the model. CpModelBuilder cp_model; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { std::vector<BoolVar> shifts_worked; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts_worked.push_back(shifts[key]); } } cp_model.AddLessOrEqual(min_shifts_per_nurse, LinearExpr::Sum(shifts_worked)); cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked), max_shifts_per_nurse); } Model model; SatParameters parameters; parameters.set_linearization_level(0); // Enumerate all solutions. parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); // Display the first five solutions. // Create an atomic Boolean that will be periodically checked by the limit. std::atomic<bool> stopped(false); model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped); const int kSolutionLimit = 5; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { bool is_working = false; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(r, shifts[key])) { is_working = true; LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s); } } if (!is_working) { LOG(INFO) << " Nurse " << std::to_string(n) << " does not work"; } } } num_solutions++; if (num_solutions >= kSolutionLimit) { stopped = true; LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions."; } })); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); LOG(INFO) << "solutions found : " << std::to_string(num_solutions); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::NurseSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Nurses problem. */ public class NursesSat { public static void main(String[] args) { Loader.loadNativeLibraries(); final int numNurses = 4; final int numDays = 3; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder shiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { shiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); } CpSolver solver = new CpSolver(); solver.getParameters().setLinearizationLevel(0); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // Display the first five solutions. final int solutionLimit = 5; class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback { public VarArraySolutionPrinterWithLimit( int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) { solutionCount = 0; this.allNurses = allNurses; this.allDays = allDays; this.allShifts = allShifts; this.shifts = shifts; solutionLimit = limit; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d:%n", solutionCount); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { boolean isWorking = false; for (int s : allShifts) { if (booleanValue(shifts[n][d][s])) { isWorking = true; System.out.printf(" Nurse %d work shift %d%n", n, s); } } if (!isWorking) { System.out.printf(" Nurse %d does not work%n", n); } } } solutionCount++; if (solutionCount >= solutionLimit) { System.out.printf("Stop search after %d solutions%n", solutionLimit); stopSearch(); } } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final int[] allNurses; private final int[] allDays; private final int[] allShifts; private final Literal[][][] shifts; private final int solutionLimit; } VarArraySolutionPrinterWithLimit cb = new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit); // Creates a solver and solves the model. CpSolverStatus status = solver.solve(model, cb); System.out.println("Status: " + status); System.out.println(cb.getSolutionCount() + " solutions found."); // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private NursesSat() {} }
C#
using System; using System.Collections.Generic; using System.IO; using System.Linq; using Google.OrTools.Sat; public class NursesSat { public class SolutionPrinter : CpSolverSolutionCallback { public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts, Dictionary<(int, int, int), BoolVar> shifts, int limit) { solutionCount_ = 0; allNurses_ = allNurses; allDays_ = allDays; allShifts_ = allShifts; shifts_ = shifts; solutionLimit_ = limit; } public override void OnSolutionCallback() { Console.WriteLine($"Solution #{solutionCount_}:"); foreach (int d in allDays_) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses_) { bool isWorking = false; foreach (int s in allShifts_) { if (Value(shifts_[(n, d, s)]) == 1L) { isWorking = true; Console.WriteLine($" Nurse {n} work shift {s}"); } } if (!isWorking) { Console.WriteLine($" Nurse {d} does not work"); } } } solutionCount_++; if (solutionCount_ >= solutionLimit_) { Console.WriteLine($"Stop search after {solutionLimit_} solutions"); StopSearch(); } } public int SolutionCount() { return solutionCount_; } private int solutionCount_; private int[] allNurses_; private int[] allDays_; private int[] allShifts_; private Dictionary<(int, int, int), BoolVar> shifts_; private int solutionLimit_; } public static void Main(String[] args) { const int numNurses = 4; const int numDays = 3; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); // Creates the model. CpModel model = new CpModel(); model.Model.Variables.Capacity = numNurses * numDays * numShifts; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Dictionary<(int, int, int), BoolVar> shifts = new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } } // Each shift is assigned to exactly one nurse in the schedule period. List<ILiteral> literals = new List<ILiteral>(); foreach (int d in allDays) { foreach (int s in allShifts) { foreach (int n in allNurses) { literals.Add(shifts[(n, d, s)]); } model.AddExactlyOne(literals); literals.Clear(); } } // Each nurse works at most one shift per day. foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { literals.Add(shifts[(n, d, s)]); } model.AddAtMostOne(literals); literals.Clear(); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } List<IntVar> shiftsWorked = new List<IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shiftsWorked.Add(shifts[(n, d, s)]); } } model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); shiftsWorked.Clear(); } CpSolver solver = new CpSolver(); // Tell the solver to enumerate all solutions. solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true "; // Display the first five solutions. const int solutionLimit = 5; SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit); // Solve CpSolverStatus status = solver.Solve(model, cb); Console.WriteLine($"Solve status: {status}"); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }
Pianificazione con richieste di turni
In questa sezione, prendiamo l'esempio precedente e aggiungiamo le richieste di infermiere per cambiamenti specifici. Cerchiamo quindi una pianificazione che massimizzi il numero di richieste soddisfatte. Per la maggior parte dei problemi di pianificazione, è meglio ottimizzare una funzione obiettivo, poiché di solito non è pratico stampare tutte le programmazioni possibili.
Questo esempio ha gli stessi vincoli dell'esempio precedente.
Importa le librerie
Il codice seguente importa la libreria richiesta.
Python
from typing import Union from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat;
Dati per l'esempio
I dati per questo esempio sono mostrati di seguito.
Python
num_nurses = 5 num_shifts = 3 num_days = 7 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) shift_requests = [ [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]], [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]], ]
C++
const int num_nurses = 5; const int num_days = 7; const int num_shifts = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<std::vector<std::vector<int64_t>>> shift_requests = { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, };
Java
final int numNurses = 5; final int numDays = 7; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); final int[][][] shiftRequests = new int[][][] { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, };
C#
const int numNurses = 5; const int numDays = 7; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); int[,,] shiftRequests = new int[,,] { { { 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 1 }, }, { { 0, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 1, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, }, { { 0, 1, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, { { 0, 0, 1 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, }, { { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, };
crea il modello
Il codice seguente crea il modello.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Crea le variabili
Il seguente codice include un array di variabili per il problema.
Oltre alle variabili dell'esempio precedente, i dati contengono anche un parametro insieme di tripli, corrispondenti ai tre turni giornalieri. Ogni elemento è 0 o 1, che indica se è stato richiesto uno spostamento. Ad esempio, triplo [0, 0, 1] nella quinta posizione della riga 1 indica che l’infermiere 1 richiede turno 3 il quinto giorno.
Python
shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")
C++
std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } }
Java
Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } }
C#
Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } }
crea i vincoli
Il seguente codice crea i vincoli per il problema.
Python
for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)
C++
for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } }
Java
for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } }
C#
foreach (int d in allDays) { foreach (int s in allShifts) { IntVar[] x = new IntVar[numNurses]; foreach (int n in allNurses) { var key = Tuple.Create(n, d, s); x[n] = shifts[key]; } model.Add(LinearExpr.Sum(x) == 1); } }
Python
for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)
C++
for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } }
Java
for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } }
C#
foreach (int n in allNurses) { foreach (int d in allDays) { IntVar[] x = new IntVar[numShifts]; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); x[s] = shifts[key]; } model.Add(LinearExpr.Sum(x) <= 1); } }
Python
# Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: num_shifts_worked: Union[cp_model.LinearExpr, int] = 0 for d in all_days: for s in all_shifts: num_shifts_worked += shifts[(n, d, s)] model.add(min_shifts_per_nurse <= num_shifts_worked) model.add(num_shifts_worked <= max_shifts_per_nurse)
C++
// Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { LinearExpr num_worked_shifts; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); num_worked_shifts += shifts[key]; } } cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts); cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse); }
Java
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { numShiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); }
C#
// Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } foreach (int n in allNurses) { IntVar[] numShiftsWorked = new IntVar[numDays * numShifts]; foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); numShiftsWorked[d * numShifts + s] = shifts[key]; } } model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); }
Obiettivo dell'esempio
Vogliamo ottimizzare la seguente funzione obiettivo.
Python
model.maximize( sum( shift_requests[n][d][s] * shifts[(n, d, s)] for n in all_nurses for d in all_days for s in all_shifts ) )
C++
LinearExpr objective_expr; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { if (shift_requests[n][d][s] == 1) { auto key = std::make_tuple(n, d, s); objective_expr += shifts[key] * shift_requests[n][d][s]; } } } } cp_model.Maximize(objective_expr);
Java
LinearExprBuilder obj = LinearExpr.newBuilder(); for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]); } } } model.maximize(obj);
C#
IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts]; int[] flatShiftRequests = new int[numNurses * numDays * numShifts]; foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key]; flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s]; } } } model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests));
Poiché shift_requests[n][d][s] * shifts[(n, d, s)
è 1 se è assegnato il cambio s
all'infermiera n
il giorno d
e quell'infermiere ha richiesto il turno (e 0 altrimenti),
l'obiettivo è lo spostamento di numero delle assegnazioni che soddisfano una richiesta.
Richiama il risolutore
Il seguente codice chiama il risolutore.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
Visualizza i risultati
Il codice riportato di seguito visualizza l'output seguente, che contiene una (anche se forse non l'unico). L'output mostra quale spostamento le assegnazioni richieste e il numero di richieste che sono state soddisfatte.
Python
if status == cp_model.OPTIMAL: print("Solution:") for d in all_days: print("Day", d) for n in all_nurses: for s in all_shifts: if solver.value(shifts[(n, d, s)]) == 1: if shift_requests[n][d][s] == 1: print("Nurse", n, "works shift", s, "(requested).") else: print("Nurse", n, "works shift", s, "(not requested).") print() print( f"Number of shift requests met = {solver.objective_value}", f"(out of {num_nurses * min_shifts_per_nurse})", ) else: print("No optimal solution found !")
C++
if (response.status() == CpSolverStatus::OPTIMAL) { LOG(INFO) << "Solution:"; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(response, shifts[key]) == 1) { if (shift_requests[n][d][s] == 1) { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (requested)."; } else { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (not requested)."; } } } } LOG(INFO) << ""; } LOG(INFO) << "Number of shift requests met = " << response.objective_value() << " (out of " << num_nurses * min_shifts_per_nurse << ")"; } else { LOG(INFO) << "No optimal solution found !"; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Solution:%n"); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { for (int s : allShifts) { if (solver.booleanValue(shifts[n][d][s])) { if (shiftRequests[n][d][s] == 1) { System.out.printf(" Nurse %d works shift %d (requested).%n", n, s); } else { System.out.printf(" Nurse %d works shift %d (not requested).%n", n, s); } } } } } System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(), numNurses * minShiftsPerNurse); } else { System.out.printf("No optimal solution found !"); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); foreach (int d in allDays) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses) { bool isWorking = false; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); if (solver.Value(shifts[key]) == 1L) { if (shiftRequests[n, d, s] == 1) { Console.WriteLine($" Nurse {n} work shift {s} (requested)."); } else { Console.WriteLine($" Nurse {n} work shift {s} (not requested)."); } } } } } Console.WriteLine( $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse})."); } else { Console.WriteLine("No solution found."); }
Quando esegui il programma, viene visualizzato il seguente output:
Day 0
Nurse 1 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 2 (requested).
Day 1
Nurse 0 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 4 works shift 2 (requested).
Day 2
Nurse 1 works shift 2 (not requested).
Nurse 3 works shift 0 (requested).
Nurse 4 works shift 1 (requested).
Day 3
Nurse 2 works shift 0 (requested).
Nurse 3 works shift 1 (requested).
Nurse 4 works shift 2 (not requested).
Day 4
Nurse 0 works shift 2 (requested).
Nurse 1 works shift 0 (requested).
Nurse 4 works shift 1 (not requested).
Day 5
Nurse 0 works shift 2 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 0 (requested).
Day 6
Nurse 0 works shift 1 (not requested).
Nurse 1 works shift 2 (requested).
Nurse 4 works shift 0 (not requested).
Statistics
- Number of shift requests met = 13 (out of 20 )
- wall time : 0.003571 s
Intero programma
Ecco l'intero programma per la programmazione con richieste di turni.
Python
"""Nurse scheduling problem with shift requests.""" from typing import Union from ortools.sat.python import cp_model def main() -> None: # This program tries to find an optimal assignment of nurses to shifts # (3 shifts per day, for 7 days), subject to some constraints (see below). # Each nurse can request to be assigned to specific shifts. # The optimal assignment maximizes the number of fulfilled shift requests. num_nurses = 5 num_shifts = 3 num_days = 7 all_nurses = range(num_nurses) all_shifts = range(num_shifts) all_days = range(num_days) shift_requests = [ [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]], [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]], ] # Creates the model. model = cp_model.CpModel() # Creates shift variables. # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. shifts = {} for n in all_nurses: for d in all_days: for s in all_shifts: shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}") # Each shift is assigned to exactly one nurse in . for d in all_days: for s in all_shifts: model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses) # Each nurse works at most one shift per day. for n in all_nurses: for d in all_days: model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts) # Try to distribute the shifts evenly, so that each nurse works # min_shifts_per_nurse shifts. If this is not possible, because the total # number of shifts is not divisible by the number of nurses, some nurses will # be assigned one more shift. min_shifts_per_nurse = (num_shifts * num_days) // num_nurses if num_shifts * num_days % num_nurses == 0: max_shifts_per_nurse = min_shifts_per_nurse else: max_shifts_per_nurse = min_shifts_per_nurse + 1 for n in all_nurses: num_shifts_worked: Union[cp_model.LinearExpr, int] = 0 for d in all_days: for s in all_shifts: num_shifts_worked += shifts[(n, d, s)] model.add(min_shifts_per_nurse <= num_shifts_worked) model.add(num_shifts_worked <= max_shifts_per_nurse) model.maximize( sum( shift_requests[n][d][s] * shifts[(n, d, s)] for n in all_nurses for d in all_days for s in all_shifts ) ) # Creates the solver and solve. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL: print("Solution:") for d in all_days: print("Day", d) for n in all_nurses: for s in all_shifts: if solver.value(shifts[(n, d, s)]) == 1: if shift_requests[n][d][s] == 1: print("Nurse", n, "works shift", s, "(requested).") else: print("Nurse", n, "works shift", s, "(not requested).") print() print( f"Number of shift requests met = {solver.objective_value}", f"(out of {num_nurses * min_shifts_per_nurse})", ) else: print("No optimal solution found !") # Statistics. print("\nStatistics") print(f" - conflicts: {solver.num_conflicts}") print(f" - branches : {solver.num_branches}") print(f" - wall time: {solver.wall_time}s") if __name__ == "__main__": main()
C++
// Nurse scheduling problem with shift requests. #include <stdlib.h> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void ScheduleRequestsSat() { const int num_nurses = 5; const int num_days = 7; const int num_shifts = 3; std::vector<int> all_nurses(num_nurses); std::iota(all_nurses.begin(), all_nurses.end(), 0); std::vector<int> all_days(num_days); std::iota(all_days.begin(), all_days.end(), 0); std::vector<int> all_shifts(num_shifts); std::iota(all_shifts.begin(), all_shifts.end(), 0); std::vector<std::vector<std::vector<int64_t>>> shift_requests = { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, }; // Creates the model. CpModelBuilder cp_model; // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. std::map<std::tuple<int, int, int>, BoolVar> shifts; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); shifts[key] = cp_model.NewBoolVar().WithName( absl::StrFormat("shift_n%dd%ds%d", n, d, s)); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : all_days) { for (int s : all_shifts) { std::vector<BoolVar> nurses; for (int n : all_nurses) { auto key = std::make_tuple(n, d, s); nurses.push_back(shifts[key]); } cp_model.AddExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : all_nurses) { for (int d : all_days) { std::vector<BoolVar> work; for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); work.push_back(shifts[key]); } cp_model.AddAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // min_shifts_per_nurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses; int max_shifts_per_nurse; if ((num_shifts * num_days) % num_nurses == 0) { max_shifts_per_nurse = min_shifts_per_nurse; } else { max_shifts_per_nurse = min_shifts_per_nurse + 1; } for (int n : all_nurses) { LinearExpr num_worked_shifts; for (int d : all_days) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); num_worked_shifts += shifts[key]; } } cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts); cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse); } LinearExpr objective_expr; for (int n : all_nurses) { for (int d : all_days) { for (int s : all_shifts) { if (shift_requests[n][d][s] == 1) { auto key = std::make_tuple(n, d, s); objective_expr += shifts[key] * shift_requests[n][d][s]; } } } } cp_model.Maximize(objective_expr); const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL) { LOG(INFO) << "Solution:"; for (int d : all_days) { LOG(INFO) << "Day " << std::to_string(d); for (int n : all_nurses) { for (int s : all_shifts) { auto key = std::make_tuple(n, d, s); if (SolutionIntegerValue(response, shifts[key]) == 1) { if (shift_requests[n][d][s] == 1) { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (requested)."; } else { LOG(INFO) << " Nurse " << std::to_string(n) << " works shift " << std::to_string(s) << " (not requested)."; } } } } LOG(INFO) << ""; } LOG(INFO) << "Number of shift requests met = " << response.objective_value() << " (out of " << num_nurses * min_shifts_per_nurse << ")"; } else { LOG(INFO) << "No optimal solution found !"; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::ScheduleRequestsSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Nurses problem with schedule requests. */ public class ScheduleRequestsSat { public static void main(String[] args) { Loader.loadNativeLibraries(); final int numNurses = 5; final int numDays = 7; final int numShifts = 3; final int[] allNurses = IntStream.range(0, numNurses).toArray(); final int[] allDays = IntStream.range(0, numDays).toArray(); final int[] allShifts = IntStream.range(0, numShifts).toArray(); final int[][][] shiftRequests = new int[][][] { { {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, }, { {0, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {0, 0, 0}, {0, 0, 1}, }, { {0, 1, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, { {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, }, { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 0}, }, }; // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Literal[][][] shifts = new Literal[numNurses][numDays][numShifts]; for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s); } } } // Each shift is assigned to exactly one nurse in the schedule period. for (int d : allDays) { for (int s : allShifts) { List<Literal> nurses = new ArrayList<>(); for (int n : allNurses) { nurses.add(shifts[n][d][s]); } model.addExactlyOne(nurses); } } // Each nurse works at most one shift per day. for (int n : allNurses) { for (int d : allDays) { List<Literal> work = new ArrayList<>(); for (int s : allShifts) { work.add(shifts[n][d][s]); } model.addAtMostOne(work); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } for (int n : allNurses) { LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder(); for (int d : allDays) { for (int s : allShifts) { numShiftsWorked.add(shifts[n][d][s]); } } model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse); } LinearExprBuilder obj = LinearExpr.newBuilder(); for (int n : allNurses) { for (int d : allDays) { for (int s : allShifts) { obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]); } } } model.maximize(obj); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Solution:%n"); for (int d : allDays) { System.out.printf("Day %d%n", d); for (int n : allNurses) { for (int s : allShifts) { if (solver.booleanValue(shifts[n][d][s])) { if (shiftRequests[n][d][s] == 1) { System.out.printf(" Nurse %d works shift %d (requested).%n", n, s); } else { System.out.printf(" Nurse %d works shift %d (not requested).%n", n, s); } } } } } System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(), numNurses * minShiftsPerNurse); } else { System.out.printf("No optimal solution found !"); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private ScheduleRequestsSat() {} }
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat; public class ScheduleRequestsSat { public static void Main(String[] args) { const int numNurses = 5; const int numDays = 7; const int numShifts = 3; int[] allNurses = Enumerable.Range(0, numNurses).ToArray(); int[] allDays = Enumerable.Range(0, numDays).ToArray(); int[] allShifts = Enumerable.Range(0, numShifts).ToArray(); int[,,] shiftRequests = new int[,,] { { { 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 1 }, }, { { 0, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 1, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 0, 1 }, }, { { 0, 1, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, { { 0, 0, 1 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 0, 0 }, }, { { 0, 0, 0 }, { 0, 0, 1 }, { 0, 1, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 }, }, }; // Creates the model. CpModel model = new CpModel(); // Creates shift variables. // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'. Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>(); foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}")); } } } // Each shift is assigned to exactly one nurse in the schedule period. foreach (int d in allDays) { foreach (int s in allShifts) { IntVar[] x = new IntVar[numNurses]; foreach (int n in allNurses) { var key = Tuple.Create(n, d, s); x[n] = shifts[key]; } model.Add(LinearExpr.Sum(x) == 1); } } // Each nurse works at most one shift per day. foreach (int n in allNurses) { foreach (int d in allDays) { IntVar[] x = new IntVar[numShifts]; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); x[s] = shifts[key]; } model.Add(LinearExpr.Sum(x) <= 1); } } // Try to distribute the shifts evenly, so that each nurse works // minShiftsPerNurse shifts. If this is not possible, because the total // number of shifts is not divisible by the number of nurses, some nurses will // be assigned one more shift. int minShiftsPerNurse = (numShifts * numDays) / numNurses; int maxShiftsPerNurse; if ((numShifts * numDays) % numNurses == 0) { maxShiftsPerNurse = minShiftsPerNurse; } else { maxShiftsPerNurse = minShiftsPerNurse + 1; } foreach (int n in allNurses) { IntVar[] numShiftsWorked = new IntVar[numDays * numShifts]; foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); numShiftsWorked[d * numShifts + s] = shifts[key]; } } model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse); } IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts]; int[] flatShiftRequests = new int[numNurses * numDays * numShifts]; foreach (int n in allNurses) { foreach (int d in allDays) { foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key]; flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s]; } } } model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests)); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); foreach (int d in allDays) { Console.WriteLine($"Day {d}"); foreach (int n in allNurses) { bool isWorking = false; foreach (int s in allShifts) { var key = Tuple.Create(n, d, s); if (solver.Value(shifts[key]) == 1L) { if (shiftRequests[n, d, s] == 1) { Console.WriteLine($" Nurse {n} work shift {s} (requested)."); } else { Console.WriteLine($" Nurse {n} work shift {s} (not requested)."); } } } } } Console.WriteLine( $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse})."); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }