Çalışan Planlama

Birden fazla vardiyada çalışan kuruluşların, yeterli düzeyde zaman planlaması yapması gerekir. yeni bir iş gücü oluşturabilirsiniz. Genellikle zaman çizelgelerinde kısıtlamalar olur, "Hiçbir çalışan art arda iki vardiya çalışmamalıdır" gibi bir ifade ekleyebilirsiniz. Bir iş görüşmesinde kısıtlayıcının olması hesaplama açısından zor olabilir.

Aşağıdaki bölümlerde çalışan zaman çizelgesindeki sorunlara ilişkin iki örnek ve CP-SAT çözücü ile bunların nasıl çözüleceğini gösterebilirsiniz.

Daha karmaşık bir örnek için shift planlama programı bulabilirsiniz.

Hemşire planlama sorunu

Bir sonraki örnekte hastane süpervizörünün dört haftalık hemşirelere üç günlük bir süre boyunca göndermeniz gerekir:

  • Her gün 8 saatlik üç vardiyaya bölünür.
  • Her gün her vardiya tek bir hemşireye atanır ve hiçbir hemşire daha fazla çalışmaz. görebilirsiniz.
  • Her hemşire üç günlük süre boyunca en az iki vardiyaya atanmalıdır.

Aşağıdaki bölümlerde hemşire planlama sorununa bir çözüm sunulmaktadır.

Kitaplıkları içe aktarma

Aşağıdaki kod, gerekli kitaplığı içe aktarır.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <atomic>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/time_limit.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Google.OrTools.Sat;

Örnekteki veriler

Aşağıdaki kod bu örnekle ilgili verileri oluşturur.

Python

num_nurses = 4
num_shifts = 3
num_days = 3
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)

C++

const int num_nurses = 4;
const int num_shifts = 3;
const int num_days = 3;

std::vector<int> all_nurses(num_nurses);
std::iota(all_nurses.begin(), all_nurses.end(), 0);

std::vector<int> all_shifts(num_shifts);
std::iota(all_shifts.begin(), all_shifts.end(), 0);

std::vector<int> all_days(num_days);
std::iota(all_days.begin(), all_days.end(), 0);

Java

final int numNurses = 4;
final int numDays = 3;
final int numShifts = 3;

final int[] allNurses = IntStream.range(0, numNurses).toArray();
final int[] allDays = IntStream.range(0, numDays).toArray();
final int[] allShifts = IntStream.range(0, numShifts).toArray();

C#

const int numNurses = 4;
const int numDays = 3;
const int numShifts = 3;

int[] allNurses = Enumerable.Range(0, numNurses).ToArray();
int[] allDays = Enumerable.Range(0, numDays).ToArray();
int[] allShifts = Enumerable.Range(0, numShifts).ToArray();

Modeli oluşturma

Aşağıdaki kod modeli oluşturur.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();
model.Model.Variables.Capacity = numNurses * numDays * numShifts;

Değişkenleri oluşturma

Aşağıdaki kod bir değişken dizisi oluşturur.

Python

shifts = {}
for n in all_nurses:
    for d in all_days:
        for s in all_shifts:
            shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")

C++

std::map<std::tuple<int, int, int>, BoolVar> shifts;
for (int n : all_nurses) {
  for (int d : all_days) {
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      shifts[key] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("shift_n%dd%ds%d", n, d, s));
    }
  }
}

Java

Literal[][][] shifts = new Literal[numNurses][numDays][numShifts];
for (int n : allNurses) {
  for (int d : allDays) {
    for (int s : allShifts) {
      shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s);
    }
  }
}

C#

Dictionary<(int, int, int), BoolVar> shifts =
    new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts);
foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}"));
        }
    }
}

Dizi, hemşirelere yapılan vardiyaların atamalarını şu şekilde tanımlar: shifts[(n, d, s)], d. günde hemşire n'ye vardiya s atanırsa 1'e, 0'a eşittir aksi takdirde.

Vardiyalara hemşireler atama

Ardından, aşağıdaki kısıtlamalara tabi olan vardiyalara nasıl hemşirelerin atanacağını göstereceğiz:

  • Her vardiya, günde tek bir hemşireye atanır.
  • Her hemşire günde en fazla bir vardiyada çalışır.

İlk koşulu oluşturan kodu burada görebilirsiniz.

Python

for d in all_days:
    for s in all_shifts:
        model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)

C++

for (int d : all_days) {
  for (int s : all_shifts) {
    std::vector<BoolVar> nurses;
    for (int n : all_nurses) {
      auto key = std::make_tuple(n, d, s);
      nurses.push_back(shifts[key]);
    }
    cp_model.AddExactlyOne(nurses);
  }
}

Java

for (int d : allDays) {
  for (int s : allShifts) {
    List<Literal> nurses = new ArrayList<>();
    for (int n : allNurses) {
      nurses.add(shifts[n][d][s]);
    }
    model.addExactlyOne(nurses);
  }
}

C#

List<ILiteral> literals = new List<ILiteral>();
foreach (int d in allDays)
{
    foreach (int s in allShifts)
    {
        foreach (int n in allNurses)
        {
            literals.Add(shifts[(n, d, s)]);
        }
        model.AddExactlyOne(literals);
        literals.Clear();
    }
}

Son satır, her vardiya için bu değişime atanan hemşirelerin toplam sayısının vardiya 1'dir.

Şimdi de her hemşirenin her gün en fazla bir vardiyada çalışmasını değer.

Python

for n in all_nurses:
    for d in all_days:
        model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)

C++

for (int n : all_nurses) {
  for (int d : all_days) {
    std::vector<BoolVar> work;
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      work.push_back(shifts[key]);
    }
    cp_model.AddAtMostOne(work);
  }
}

Java

for (int n : allNurses) {
  for (int d : allDays) {
    List<Literal> work = new ArrayList<>();
    for (int s : allShifts) {
      work.add(shifts[n][d][s]);
    }
    model.addAtMostOne(work);
  }
}

C#

foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            literals.Add(shifts[(n, d, s)]);
        }
        model.AddAtMostOne(literals);
        literals.Clear();
    }
}

Her hemşire için o hemşireye atanan vardiyaların toplamı en fazla 1 ("en fazla") hemşireye izin verilebilir.

Kaydırmaları eşit şekilde ata

Ardından, vardiyaların hemşirelere mümkün olduğunca eşit sıklıkta nasıl atanacağını göstereceğiz. Üç günlük dönem içinde dokuz değişim olduğu için iki vardiya atayabiliriz hemşireye gönderir. Sonrasında herhangi bir hemşireye atanabilecek bir vardiya kalacak.

Aşağıdaki kod her hemşirenin çalışma süresince en az iki vardiyada çalışmasını üç günlük süre.

Python

# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
    max_shifts_per_nurse = min_shifts_per_nurse
else:
    max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
    shifts_worked = []
    for d in all_days:
        for s in all_shifts:
            shifts_worked.append(shifts[(n, d, s)])
    model.add(min_shifts_per_nurse <= sum(shifts_worked))
    model.add(sum(shifts_worked) <= max_shifts_per_nurse)

C++

// Try to distribute the shifts evenly, so that each nurse works
// min_shifts_per_nurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses;
int max_shifts_per_nurse;
if ((num_shifts * num_days) % num_nurses == 0) {
  max_shifts_per_nurse = min_shifts_per_nurse;
} else {
  max_shifts_per_nurse = min_shifts_per_nurse + 1;
}
for (int n : all_nurses) {
  std::vector<BoolVar> shifts_worked;
  for (int d : all_days) {
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      shifts_worked.push_back(shifts[key]);
    }
  }
  cp_model.AddLessOrEqual(min_shifts_per_nurse,
                          LinearExpr::Sum(shifts_worked));
  cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked),
                          max_shifts_per_nurse);
}

Java

// Try to distribute the shifts evenly, so that each nurse works
// minShiftsPerNurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int minShiftsPerNurse = (numShifts * numDays) / numNurses;
int maxShiftsPerNurse;
if ((numShifts * numDays) % numNurses == 0) {
  maxShiftsPerNurse = minShiftsPerNurse;
} else {
  maxShiftsPerNurse = minShiftsPerNurse + 1;
}
for (int n : allNurses) {
  LinearExprBuilder shiftsWorked = LinearExpr.newBuilder();
  for (int d : allDays) {
    for (int s : allShifts) {
      shiftsWorked.add(shifts[n][d][s]);
    }
  }
  model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse);
}

C#

// Try to distribute the shifts evenly, so that each nurse works
// minShiftsPerNurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int minShiftsPerNurse = (numShifts * numDays) / numNurses;
int maxShiftsPerNurse;
if ((numShifts * numDays) % numNurses == 0)
{
    maxShiftsPerNurse = minShiftsPerNurse;
}
else
{
    maxShiftsPerNurse = minShiftsPerNurse + 1;
}

List<IntVar> shiftsWorked = new List<IntVar>();
foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            shiftsWorked.Add(shifts[(n, d, s)]);
        }
    }
    model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse);
    shiftsWorked.Clear();
}

Zaman planlaması döneminde toplam num_shifts * num_days değişim olduğu için en az (num_shifts * num_days) // num_nurses atayabilir

hemşireye değiştirmelidir, ama bazı vardiyalar geride kalabilir. (//, Python'u temsil eder (normal bölmenin tabanını döndürür) tam sayı bölme operatörü.)

Verilen num_nurses = 4, num_shifts = 3 ve num_days = 3 değerleri için min_shifts_per_nurse ifadesi (3 * 3 // 4) = 2 değerine sahiptir, dolayısıyla her hemşireye en az iki vardiya atanabilir. Bu, kısıt (Python'da burada)

model.add(min_shifts_per_nurse <= sum(shifts_worked))
.

Üç günlük dönem içinde toplam dokuz değişim olduğu için hemşireye iki vardiya atandıktan sonra kalan vardiya oranı. Ekstra kayma, hemşirelere atanır.

Son satır (Python'da burada)

model.add(sum(shifts_worked) <= max_shifts_per_nurse)

Bir hemşirenin fazladan bir vardiyada atanmamasını sağlar.

Bu durumda sınırlama gerekli değildir, çünkü yalnızca bir üst karakter. Ancak farklı parametre değerleri için fazladan birkaç kayma olabilir. Bu durumda kısıtlama zorunlu olur.

Çözücü parametrelerini güncelleme

Optimizasyon dışı bir modelde, tüm çözümler için aramayı etkinleştirebilirsiniz.

Python

solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True

C++

Model model;
SatParameters parameters;
parameters.set_linearization_level(0);
// Enumerate all solutions.
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));

Java

CpSolver solver = new CpSolver();
solver.getParameters().setLinearizationLevel(0);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);

C#

CpSolver solver = new CpSolver();
// Tell the solver to enumerate all solutions.
solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true ";

Çözümler İçin Geri Arama Kaydetme

Çözücüye, her seferinde çağrılacak bir geri çağırma kaydetmeniz gerekir çözümüne geçelim.

Python

class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self._shifts = shifts
        self._num_nurses = num_nurses
        self._num_days = num_days
        self._num_shifts = num_shifts
        self._solution_count = 0
        self._solution_limit = limit

    def on_solution_callback(self):
        self._solution_count += 1
        print(f"Solution {self._solution_count}")
        for d in range(self._num_days):
            print(f"Day {d}")
            for n in range(self._num_nurses):
                is_working = False
                for s in range(self._num_shifts):
                    if self.value(self._shifts[(n, d, s)]):
                        is_working = True
                        print(f"  Nurse {n} works shift {s}")
                if not is_working:
                    print(f"  Nurse {n} does not work")
        if self._solution_count >= self._solution_limit:
            print(f"Stop search after {self._solution_limit} solutions")
            self.stop_search()

    def solutionCount(self):
        return self._solution_count

# Display the first five solutions.
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(
    shifts, num_nurses, num_days, num_shifts, solution_limit
)

C++

// Create an atomic Boolean that will be periodically checked by the limit.
std::atomic<bool> stopped(false);
model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped);

const int kSolutionLimit = 5;
int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
  LOG(INFO) << "Solution " << num_solutions;
  for (int d : all_days) {
    LOG(INFO) << "Day " << std::to_string(d);
    for (int n : all_nurses) {
      bool is_working = false;
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        if (SolutionIntegerValue(r, shifts[key])) {
          is_working = true;
          LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                    << std::to_string(s);
        }
      }
      if (!is_working) {
        LOG(INFO) << "  Nurse " << std::to_string(n) << " does not work";
      }
    }
  }
  num_solutions++;
  if (num_solutions >= kSolutionLimit) {
    stopped = true;
    LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions.";
  }
}));

Java

final int solutionLimit = 5;
class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback {
  public VarArraySolutionPrinterWithLimit(
      int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) {
    solutionCount = 0;
    this.allNurses = allNurses;
    this.allDays = allDays;
    this.allShifts = allShifts;
    this.shifts = shifts;
    solutionLimit = limit;
  }

  @Override
  public void onSolutionCallback() {
    System.out.printf("Solution #%d:%n", solutionCount);
    for (int d : allDays) {
      System.out.printf("Day %d%n", d);
      for (int n : allNurses) {
        boolean isWorking = false;
        for (int s : allShifts) {
          if (booleanValue(shifts[n][d][s])) {
            isWorking = true;
            System.out.printf("  Nurse %d work shift %d%n", n, s);
          }
        }
        if (!isWorking) {
          System.out.printf("  Nurse %d does not work%n", n);
        }
      }
    }
    solutionCount++;
    if (solutionCount >= solutionLimit) {
      System.out.printf("Stop search after %d solutions%n", solutionLimit);
      stopSearch();
    }
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final int[] allNurses;
  private final int[] allDays;
  private final int[] allShifts;
  private final Literal[][][] shifts;
  private final int solutionLimit;
}

VarArraySolutionPrinterWithLimit cb =
    new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit);

C#

Önce SolutionPrinter sınıfını tanımlayın.

public class SolutionPrinter : CpSolverSolutionCallback
{
    public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts,
                           Dictionary<(int, int, int), BoolVar> shifts, int limit)
    {
        solutionCount_ = 0;
        allNurses_ = allNurses;
        allDays_ = allDays;
        allShifts_ = allShifts;
        shifts_ = shifts;
        solutionLimit_ = limit;
    }

    public override void OnSolutionCallback()
    {
        Console.WriteLine($"Solution #{solutionCount_}:");
        foreach (int d in allDays_)
        {
            Console.WriteLine($"Day {d}");
            foreach (int n in allNurses_)
            {
                bool isWorking = false;
                foreach (int s in allShifts_)
                {
                    if (Value(shifts_[(n, d, s)]) == 1L)
                    {
                        isWorking = true;
                        Console.WriteLine($"  Nurse {n} work shift {s}");
                    }
                }
                if (!isWorking)
                {
                    Console.WriteLine($"  Nurse {d} does not work");
                }
            }
        }
        solutionCount_++;
        if (solutionCount_ >= solutionLimit_)
        {
            Console.WriteLine($"Stop search after {solutionLimit_} solutions");
            StopSearch();
        }
    }

    public int SolutionCount()
    {
        return solutionCount_;
    }

    private int solutionCount_;
    private int[] allNurses_;
    private int[] allDays_;
    private int[] allShifts_;
    private Dictionary<(int, int, int), BoolVar> shifts_;
    private int solutionLimit_;
}
. Daha sonra, bunu kullanarak örneklendirebilirsiniz:
const int solutionLimit = 5;
SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit);

Çözücüyü çağır

Aşağıdaki kod çözücüyü çağırır ve ilk beş çözümü gösterir.

Python

solver.solve(model, solution_printer)

C++

const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

Java

CpSolverStatus status = solver.solve(model, cb);
System.out.println("Status: " + status);
System.out.println(cb.getSolutionCount() + " solutions found.");

C#

CpSolverStatus status = solver.Solve(model, cb);
Console.WriteLine($"Solve status: {status}");

Çözümler

İlk beş çözümü burada bulabilirsiniz.

Solution 0
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work

Solution 1
Day 0
Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 does not work
Nurse 1 works shift 2
Nurse 2 works shift 1
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work

Solution 2
Day 0 Nurse 0 works shift 0
Nurse 1 does not work
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work

Solution 3
Day 0 Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 1
Nurse 1 works shift 2
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work

Solution 4
Day 0
Nurse 0 does not work
Nurse 1 works shift 0
Nurse 2 works shift 1
Nurse 3 works shift 2
Day 1
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 does not work
Nurse 3 works shift 0
Day 2
Nurse 0 works shift 2
Nurse 1 works shift 1
Nurse 2 works shift 0
Nurse 3 does not work

Statistics
  - conflicts      : 5
  - branches       : 142
  - wall time      : 0.002484 s
  - solutions found: 5

Çözümlerin toplam sayısı 5.184'tür. Aşağıdaki sayma bağımsız değişkeni bunun nedenini açıklar.

İlk olarak, fazladan vardiyada çalışan bir hemşire için 4 seçenek var. Hemşireyi seçtikten sonra, hemşirenin hemşireyi görevlendirmek için gereken olası yol sayısını ekstra kaydırma 4 · 33 = 108'dir. Bu hemşireyi atadıktan sonra her gün atanmamış iki vardiya var.

Kalan üç hemşireden biri 0 ve 1. günlerde, biri 0. ve 2. günlerde çalışıyor, diğeri ise 1. ve 2. günlerde çalışır. 3 tane var. = 6 yol gösterici olarak, şemaya bakın. (Üç hemşire A, B ve C olarak etiketlenmiş ve henüz olduğunu görebilirsiniz.)

Day 0    Day 1    Day 2
 A B      A C      B C
 A B      B C      A C
 A C      A B      B C
 A C      B C      A B
 B C      A B      A C
 B C      A C      A B

Yukarıdaki şemadaki her satır için, şunların 23 = 8 olası yolu vardır: kalan vardiyaları hemşirelere atayın (her gün iki seçenek). Yani olası atamaların toplam sayısı 108·6·8 = 5184'tür.

Programın tamamı

Hemşire planlama sorunu için programın tamamı aşağıda verilmiştir.

Python

"""Example of a simple nurse scheduling problem."""
from ortools.sat.python import cp_model


def main() -> None:
    # Data.
    num_nurses = 4
    num_shifts = 3
    num_days = 3
    all_nurses = range(num_nurses)
    all_shifts = range(num_shifts)
    all_days = range(num_days)

    # Creates the model.
    model = cp_model.CpModel()

    # Creates shift variables.
    # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
    shifts = {}
    for n in all_nurses:
        for d in all_days:
            for s in all_shifts:
                shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")

    # Each shift is assigned to exactly one nurse in the schedule period.
    for d in all_days:
        for s in all_shifts:
            model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)

    # Each nurse works at most one shift per day.
    for n in all_nurses:
        for d in all_days:
            model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)

    # Try to distribute the shifts evenly, so that each nurse works
    # min_shifts_per_nurse shifts. If this is not possible, because the total
    # number of shifts is not divisible by the number of nurses, some nurses will
    # be assigned one more shift.
    min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
    if num_shifts * num_days % num_nurses == 0:
        max_shifts_per_nurse = min_shifts_per_nurse
    else:
        max_shifts_per_nurse = min_shifts_per_nurse + 1
    for n in all_nurses:
        shifts_worked = []
        for d in all_days:
            for s in all_shifts:
                shifts_worked.append(shifts[(n, d, s)])
        model.add(min_shifts_per_nurse <= sum(shifts_worked))
        model.add(sum(shifts_worked) <= max_shifts_per_nurse)

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    solver.parameters.linearization_level = 0
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True

    class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
        """Print intermediate solutions."""

        def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
            cp_model.CpSolverSolutionCallback.__init__(self)
            self._shifts = shifts
            self._num_nurses = num_nurses
            self._num_days = num_days
            self._num_shifts = num_shifts
            self._solution_count = 0
            self._solution_limit = limit

        def on_solution_callback(self):
            self._solution_count += 1
            print(f"Solution {self._solution_count}")
            for d in range(self._num_days):
                print(f"Day {d}")
                for n in range(self._num_nurses):
                    is_working = False
                    for s in range(self._num_shifts):
                        if self.value(self._shifts[(n, d, s)]):
                            is_working = True
                            print(f"  Nurse {n} works shift {s}")
                    if not is_working:
                        print(f"  Nurse {n} does not work")
            if self._solution_count >= self._solution_limit:
                print(f"Stop search after {self._solution_limit} solutions")
                self.stop_search()

        def solutionCount(self):
            return self._solution_count

    # Display the first five solutions.
    solution_limit = 5
    solution_printer = NursesPartialSolutionPrinter(
        shifts, num_nurses, num_days, num_shifts, solution_limit
    )

    solver.solve(model, solution_printer)

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts      : {solver.num_conflicts}")
    print(f"  - branches       : {solver.num_branches}")
    print(f"  - wall time      : {solver.wall_time} s")
    print(f"  - solutions found: {solution_printer.solutionCount()}")


if __name__ == "__main__":
    main()

C++

// Example of a simple nurse scheduling problem.
#include <stdlib.h>

#include <atomic>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/time_limit.h"

namespace operations_research {
namespace sat {

void NurseSat() {
  const int num_nurses = 4;
  const int num_shifts = 3;
  const int num_days = 3;

  std::vector<int> all_nurses(num_nurses);
  std::iota(all_nurses.begin(), all_nurses.end(), 0);

  std::vector<int> all_shifts(num_shifts);
  std::iota(all_shifts.begin(), all_shifts.end(), 0);

  std::vector<int> all_days(num_days);
  std::iota(all_days.begin(), all_days.end(), 0);

  // Creates the model.
  CpModelBuilder cp_model;

  // Creates shift variables.
  // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
  std::map<std::tuple<int, int, int>, BoolVar> shifts;
  for (int n : all_nurses) {
    for (int d : all_days) {
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        shifts[key] = cp_model.NewBoolVar().WithName(
            absl::StrFormat("shift_n%dd%ds%d", n, d, s));
      }
    }
  }

  // Each shift is assigned to exactly one nurse in the schedule period.
  for (int d : all_days) {
    for (int s : all_shifts) {
      std::vector<BoolVar> nurses;
      for (int n : all_nurses) {
        auto key = std::make_tuple(n, d, s);
        nurses.push_back(shifts[key]);
      }
      cp_model.AddExactlyOne(nurses);
    }
  }

  // Each nurse works at most one shift per day.
  for (int n : all_nurses) {
    for (int d : all_days) {
      std::vector<BoolVar> work;
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        work.push_back(shifts[key]);
      }
      cp_model.AddAtMostOne(work);
    }
  }

  // Try to distribute the shifts evenly, so that each nurse works
  // min_shifts_per_nurse shifts. If this is not possible, because the total
  // number of shifts is not divisible by the number of nurses, some nurses will
  // be assigned one more shift.
  int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses;
  int max_shifts_per_nurse;
  if ((num_shifts * num_days) % num_nurses == 0) {
    max_shifts_per_nurse = min_shifts_per_nurse;
  } else {
    max_shifts_per_nurse = min_shifts_per_nurse + 1;
  }
  for (int n : all_nurses) {
    std::vector<BoolVar> shifts_worked;
    for (int d : all_days) {
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        shifts_worked.push_back(shifts[key]);
      }
    }
    cp_model.AddLessOrEqual(min_shifts_per_nurse,
                            LinearExpr::Sum(shifts_worked));
    cp_model.AddLessOrEqual(LinearExpr::Sum(shifts_worked),
                            max_shifts_per_nurse);
  }

  Model model;
  SatParameters parameters;
  parameters.set_linearization_level(0);
  // Enumerate all solutions.
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));

  // Display the first five solutions.
  // Create an atomic Boolean that will be periodically checked by the limit.
  std::atomic<bool> stopped(false);
  model.GetOrCreate<TimeLimit>()->RegisterExternalBooleanAsLimit(&stopped);

  const int kSolutionLimit = 5;
  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
    LOG(INFO) << "Solution " << num_solutions;
    for (int d : all_days) {
      LOG(INFO) << "Day " << std::to_string(d);
      for (int n : all_nurses) {
        bool is_working = false;
        for (int s : all_shifts) {
          auto key = std::make_tuple(n, d, s);
          if (SolutionIntegerValue(r, shifts[key])) {
            is_working = true;
            LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                      << std::to_string(s);
          }
        }
        if (!is_working) {
          LOG(INFO) << "  Nurse " << std::to_string(n) << " does not work";
        }
      }
    }
    num_solutions++;
    if (num_solutions >= kSolutionLimit) {
      stopped = true;
      LOG(INFO) << "Stop search after " << kSolutionLimit << " solutions.";
    }
  }));

  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
  LOG(INFO) << "solutions found : " << std::to_string(num_solutions);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::NurseSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Nurses problem. */
public class NursesSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    final int numNurses = 4;
    final int numDays = 3;
    final int numShifts = 3;

    final int[] allNurses = IntStream.range(0, numNurses).toArray();
    final int[] allDays = IntStream.range(0, numDays).toArray();
    final int[] allShifts = IntStream.range(0, numShifts).toArray();

    // Creates the model.
    CpModel model = new CpModel();

    // Creates shift variables.
    // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
    Literal[][][] shifts = new Literal[numNurses][numDays][numShifts];
    for (int n : allNurses) {
      for (int d : allDays) {
        for (int s : allShifts) {
          shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s);
        }
      }
    }

    // Each shift is assigned to exactly one nurse in the schedule period.
    for (int d : allDays) {
      for (int s : allShifts) {
        List<Literal> nurses = new ArrayList<>();
        for (int n : allNurses) {
          nurses.add(shifts[n][d][s]);
        }
        model.addExactlyOne(nurses);
      }
    }

    // Each nurse works at most one shift per day.
    for (int n : allNurses) {
      for (int d : allDays) {
        List<Literal> work = new ArrayList<>();
        for (int s : allShifts) {
          work.add(shifts[n][d][s]);
        }
        model.addAtMostOne(work);
      }
    }

    // Try to distribute the shifts evenly, so that each nurse works
    // minShiftsPerNurse shifts. If this is not possible, because the total
    // number of shifts is not divisible by the number of nurses, some nurses will
    // be assigned one more shift.
    int minShiftsPerNurse = (numShifts * numDays) / numNurses;
    int maxShiftsPerNurse;
    if ((numShifts * numDays) % numNurses == 0) {
      maxShiftsPerNurse = minShiftsPerNurse;
    } else {
      maxShiftsPerNurse = minShiftsPerNurse + 1;
    }
    for (int n : allNurses) {
      LinearExprBuilder shiftsWorked = LinearExpr.newBuilder();
      for (int d : allDays) {
        for (int s : allShifts) {
          shiftsWorked.add(shifts[n][d][s]);
        }
      }
      model.addLinearConstraint(shiftsWorked, minShiftsPerNurse, maxShiftsPerNurse);
    }

    CpSolver solver = new CpSolver();
    solver.getParameters().setLinearizationLevel(0);
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);

    // Display the first five solutions.
    final int solutionLimit = 5;
    class VarArraySolutionPrinterWithLimit extends CpSolverSolutionCallback {
      public VarArraySolutionPrinterWithLimit(
          int[] allNurses, int[] allDays, int[] allShifts, Literal[][][] shifts, int limit) {
        solutionCount = 0;
        this.allNurses = allNurses;
        this.allDays = allDays;
        this.allShifts = allShifts;
        this.shifts = shifts;
        solutionLimit = limit;
      }

      @Override
      public void onSolutionCallback() {
        System.out.printf("Solution #%d:%n", solutionCount);
        for (int d : allDays) {
          System.out.printf("Day %d%n", d);
          for (int n : allNurses) {
            boolean isWorking = false;
            for (int s : allShifts) {
              if (booleanValue(shifts[n][d][s])) {
                isWorking = true;
                System.out.printf("  Nurse %d work shift %d%n", n, s);
              }
            }
            if (!isWorking) {
              System.out.printf("  Nurse %d does not work%n", n);
            }
          }
        }
        solutionCount++;
        if (solutionCount >= solutionLimit) {
          System.out.printf("Stop search after %d solutions%n", solutionLimit);
          stopSearch();
        }
      }

      public int getSolutionCount() {
        return solutionCount;
      }

      private int solutionCount;
      private final int[] allNurses;
      private final int[] allDays;
      private final int[] allShifts;
      private final Literal[][][] shifts;
      private final int solutionLimit;
    }

    VarArraySolutionPrinterWithLimit cb =
        new VarArraySolutionPrinterWithLimit(allNurses, allDays, allShifts, shifts, solutionLimit);

    // Creates a solver and solves the model.
    CpSolverStatus status = solver.solve(model, cb);
    System.out.println("Status: " + status);
    System.out.println(cb.getSolutionCount() + " solutions found.");

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private NursesSat() {}
}

C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Google.OrTools.Sat;

public class NursesSat
{
    public class SolutionPrinter : CpSolverSolutionCallback
    {
        public SolutionPrinter(int[] allNurses, int[] allDays, int[] allShifts,
                               Dictionary<(int, int, int), BoolVar> shifts, int limit)
        {
            solutionCount_ = 0;
            allNurses_ = allNurses;
            allDays_ = allDays;
            allShifts_ = allShifts;
            shifts_ = shifts;
            solutionLimit_ = limit;
        }

        public override void OnSolutionCallback()
        {
            Console.WriteLine($"Solution #{solutionCount_}:");
            foreach (int d in allDays_)
            {
                Console.WriteLine($"Day {d}");
                foreach (int n in allNurses_)
                {
                    bool isWorking = false;
                    foreach (int s in allShifts_)
                    {
                        if (Value(shifts_[(n, d, s)]) == 1L)
                        {
                            isWorking = true;
                            Console.WriteLine($"  Nurse {n} work shift {s}");
                        }
                    }
                    if (!isWorking)
                    {
                        Console.WriteLine($"  Nurse {d} does not work");
                    }
                }
            }
            solutionCount_++;
            if (solutionCount_ >= solutionLimit_)
            {
                Console.WriteLine($"Stop search after {solutionLimit_} solutions");
                StopSearch();
            }
        }

        public int SolutionCount()
        {
            return solutionCount_;
        }

        private int solutionCount_;
        private int[] allNurses_;
        private int[] allDays_;
        private int[] allShifts_;
        private Dictionary<(int, int, int), BoolVar> shifts_;
        private int solutionLimit_;
    }

    public static void Main(String[] args)
    {
        const int numNurses = 4;
        const int numDays = 3;
        const int numShifts = 3;

        int[] allNurses = Enumerable.Range(0, numNurses).ToArray();
        int[] allDays = Enumerable.Range(0, numDays).ToArray();
        int[] allShifts = Enumerable.Range(0, numShifts).ToArray();

        // Creates the model.
        CpModel model = new CpModel();
        model.Model.Variables.Capacity = numNurses * numDays * numShifts;

        // Creates shift variables.
        // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
        Dictionary<(int, int, int), BoolVar> shifts =
            new Dictionary<(int, int, int), BoolVar>(numNurses * numDays * numShifts);
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    shifts.Add((n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}"));
                }
            }
        }

        // Each shift is assigned to exactly one nurse in the schedule period.
        List<ILiteral> literals = new List<ILiteral>();
        foreach (int d in allDays)
        {
            foreach (int s in allShifts)
            {
                foreach (int n in allNurses)
                {
                    literals.Add(shifts[(n, d, s)]);
                }
                model.AddExactlyOne(literals);
                literals.Clear();
            }
        }

        // Each nurse works at most one shift per day.
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    literals.Add(shifts[(n, d, s)]);
                }
                model.AddAtMostOne(literals);
                literals.Clear();
            }
        }

        // Try to distribute the shifts evenly, so that each nurse works
        // minShiftsPerNurse shifts. If this is not possible, because the total
        // number of shifts is not divisible by the number of nurses, some nurses will
        // be assigned one more shift.
        int minShiftsPerNurse = (numShifts * numDays) / numNurses;
        int maxShiftsPerNurse;
        if ((numShifts * numDays) % numNurses == 0)
        {
            maxShiftsPerNurse = minShiftsPerNurse;
        }
        else
        {
            maxShiftsPerNurse = minShiftsPerNurse + 1;
        }

        List<IntVar> shiftsWorked = new List<IntVar>();
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    shiftsWorked.Add(shifts[(n, d, s)]);
                }
            }
            model.AddLinearConstraint(LinearExpr.Sum(shiftsWorked), minShiftsPerNurse, maxShiftsPerNurse);
            shiftsWorked.Clear();
        }

        CpSolver solver = new CpSolver();
        // Tell the solver to enumerate all solutions.
        solver.StringParameters += "linearization_level:0 " + "enumerate_all_solutions:true ";

        // Display the first five solutions.
        const int solutionLimit = 5;
        SolutionPrinter cb = new SolutionPrinter(allNurses, allDays, allShifts, shifts, solutionLimit);

        // Solve
        CpSolverStatus status = solver.Solve(model, cb);
        Console.WriteLine($"Solve status: {status}");

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}

Vardiya istekleriyle planlama

Bu bölümde, önceki örneği alıp geçiş yapabilirsiniz. Ardından, karşılanan istek sayısını en üst düzeye çıkaran bir zaman planlaması ararız. Çoğu çizelgeleme problemi için en iyi seçenek, genellikle mümkün olan tüm programların yazdırılması kolay değildir.

Bu örnek, önceki örnekle aynı kısıtlamalara sahiptir.

Kitaplıkları içe aktarma

Aşağıdaki kod, gerekli kitaplığı içe aktarır.

Python

from typing import Union

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

Örnekteki veriler

Bu örnekteki veriler daha sonra gösterilmektedir.

Python

num_nurses = 5
num_shifts = 3
num_days = 7
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)
shift_requests = [
    [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]],
    [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]],
    [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]],
    [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
    [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]],
]

C++

const int num_nurses = 5;
const int num_days = 7;
const int num_shifts = 3;

std::vector<int> all_nurses(num_nurses);
std::iota(all_nurses.begin(), all_nurses.end(), 0);

std::vector<int> all_days(num_days);
std::iota(all_days.begin(), all_days.end(), 0);

std::vector<int> all_shifts(num_shifts);
std::iota(all_shifts.begin(), all_shifts.end(), 0);

std::vector<std::vector<std::vector<int64_t>>> shift_requests = {
    {
        {0, 0, 1},
        {0, 0, 0},
        {0, 0, 0},
        {0, 0, 0},
        {0, 0, 1},
        {0, 1, 0},
        {0, 0, 1},
    },
    {
        {0, 0, 0},
        {0, 0, 0},
        {0, 1, 0},
        {0, 1, 0},
        {1, 0, 0},
        {0, 0, 0},
        {0, 0, 1},
    },
    {
        {0, 1, 0},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
    },
    {
        {0, 0, 1},
        {0, 0, 0},
        {1, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 0, 0},
    },
    {
        {0, 0, 0},
        {0, 0, 1},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
    },
};

Java

final int numNurses = 5;
final int numDays = 7;
final int numShifts = 3;

final int[] allNurses = IntStream.range(0, numNurses).toArray();
final int[] allDays = IntStream.range(0, numDays).toArray();
final int[] allShifts = IntStream.range(0, numShifts).toArray();

final int[][][] shiftRequests = new int[][][] {
    {
        {0, 0, 1},
        {0, 0, 0},
        {0, 0, 0},
        {0, 0, 0},
        {0, 0, 1},
        {0, 1, 0},
        {0, 0, 1},
    },
    {
        {0, 0, 0},
        {0, 0, 0},
        {0, 1, 0},
        {0, 1, 0},
        {1, 0, 0},
        {0, 0, 0},
        {0, 0, 1},
    },
    {
        {0, 1, 0},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
    },
    {
        {0, 0, 1},
        {0, 0, 0},
        {1, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 0, 0},
    },
    {
        {0, 0, 0},
        {0, 0, 1},
        {0, 1, 0},
        {0, 0, 0},
        {1, 0, 0},
        {0, 1, 0},
        {0, 0, 0},
    },
};

C#

const int numNurses = 5;
const int numDays = 7;
const int numShifts = 3;

int[] allNurses = Enumerable.Range(0, numNurses).ToArray();
int[] allDays = Enumerable.Range(0, numDays).ToArray();
int[] allShifts = Enumerable.Range(0, numShifts).ToArray();

int[,,] shiftRequests = new int[,,] {
    {
        { 0, 0, 1 },
        { 0, 0, 0 },
        { 0, 0, 0 },
        { 0, 0, 0 },
        { 0, 0, 1 },
        { 0, 1, 0 },
        { 0, 0, 1 },
    },
    {
        { 0, 0, 0 },
        { 0, 0, 0 },
        { 0, 1, 0 },
        { 0, 1, 0 },
        { 1, 0, 0 },
        { 0, 0, 0 },
        { 0, 0, 1 },
    },
    {
        { 0, 1, 0 },
        { 0, 1, 0 },
        { 0, 0, 0 },
        { 1, 0, 0 },
        { 0, 0, 0 },
        { 0, 1, 0 },
        { 0, 0, 0 },
    },
    {
        { 0, 0, 1 },
        { 0, 0, 0 },
        { 1, 0, 0 },
        { 0, 1, 0 },
        { 0, 0, 0 },
        { 1, 0, 0 },
        { 0, 0, 0 },
    },
    {
        { 0, 0, 0 },
        { 0, 0, 1 },
        { 0, 1, 0 },
        { 0, 0, 0 },
        { 1, 0, 0 },
        { 0, 1, 0 },
        { 0, 0, 0 },
    },
};

Modeli oluşturma

Aşağıdaki kod modeli oluşturur.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Değişkenleri oluşturma

Aşağıdaki kodda problemle ilgili bir değişken dizisi kodu verilmiştir.

Önceki örnekteki değişkenlere ek olarak, veriler aynı zamanda bir üçlü kümesi kümesi olarak belirler. Her bir öğe üçlü değeri 0 veya 1'dir. Bu değer, değişim istenip istenmediğini gösterir. Örneğin, 1. satırın beşinci konumundaki üçlü [0, 0, 1] ise hemşire 1 isteklerini gösterir 5. günde vardiya 3.

Python

shifts = {}
for n in all_nurses:
    for d in all_days:
        for s in all_shifts:
            shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")

C++

std::map<std::tuple<int, int, int>, BoolVar> shifts;
for (int n : all_nurses) {
  for (int d : all_days) {
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      shifts[key] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("shift_n%dd%ds%d", n, d, s));
    }
  }
}

Java

Literal[][][] shifts = new Literal[numNurses][numDays][numShifts];
for (int n : allNurses) {
  for (int d : allDays) {
    for (int s : allShifts) {
      shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s);
    }
  }
}

C#

Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>();
foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}"));
        }
    }
}

Kısıtlamaları oluşturma

Aşağıdaki kod, sorun için kısıtlamalar oluşturur.

Python

for d in all_days:
    for s in all_shifts:
        model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)

C++

for (int d : all_days) {
  for (int s : all_shifts) {
    std::vector<BoolVar> nurses;
    for (int n : all_nurses) {
      auto key = std::make_tuple(n, d, s);
      nurses.push_back(shifts[key]);
    }
    cp_model.AddExactlyOne(nurses);
  }
}

Java

for (int d : allDays) {
  for (int s : allShifts) {
    List<Literal> nurses = new ArrayList<>();
    for (int n : allNurses) {
      nurses.add(shifts[n][d][s]);
    }
    model.addExactlyOne(nurses);
  }
}

C#

foreach (int d in allDays)
{
    foreach (int s in allShifts)
    {
        IntVar[] x = new IntVar[numNurses];
        foreach (int n in allNurses)
        {
            var key = Tuple.Create(n, d, s);
            x[n] = shifts[key];
        }
        model.Add(LinearExpr.Sum(x) == 1);
    }
}

Python

for n in all_nurses:
    for d in all_days:
        model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)

C++

for (int n : all_nurses) {
  for (int d : all_days) {
    std::vector<BoolVar> work;
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      work.push_back(shifts[key]);
    }
    cp_model.AddAtMostOne(work);
  }
}

Java

for (int n : allNurses) {
  for (int d : allDays) {
    List<Literal> work = new ArrayList<>();
    for (int s : allShifts) {
      work.add(shifts[n][d][s]);
    }
    model.addAtMostOne(work);
  }
}

C#

foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        IntVar[] x = new IntVar[numShifts];
        foreach (int s in allShifts)
        {
            var key = Tuple.Create(n, d, s);
            x[s] = shifts[key];
        }
        model.Add(LinearExpr.Sum(x) <= 1);
    }
}

Python

# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
    max_shifts_per_nurse = min_shifts_per_nurse
else:
    max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
    num_shifts_worked: Union[cp_model.LinearExpr, int] = 0
    for d in all_days:
        for s in all_shifts:
            num_shifts_worked += shifts[(n, d, s)]
    model.add(min_shifts_per_nurse <= num_shifts_worked)
    model.add(num_shifts_worked <= max_shifts_per_nurse)

C++

// Try to distribute the shifts evenly, so that each nurse works
// min_shifts_per_nurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses;
int max_shifts_per_nurse;
if ((num_shifts * num_days) % num_nurses == 0) {
  max_shifts_per_nurse = min_shifts_per_nurse;
} else {
  max_shifts_per_nurse = min_shifts_per_nurse + 1;
}
for (int n : all_nurses) {
  LinearExpr num_worked_shifts;
  for (int d : all_days) {
    for (int s : all_shifts) {
      auto key = std::make_tuple(n, d, s);
      num_worked_shifts += shifts[key];
    }
  }
  cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts);
  cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse);
}

Java

// Try to distribute the shifts evenly, so that each nurse works
// minShiftsPerNurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int minShiftsPerNurse = (numShifts * numDays) / numNurses;
int maxShiftsPerNurse;
if ((numShifts * numDays) % numNurses == 0) {
  maxShiftsPerNurse = minShiftsPerNurse;
} else {
  maxShiftsPerNurse = minShiftsPerNurse + 1;
}
for (int n : allNurses) {
  LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder();
  for (int d : allDays) {
    for (int s : allShifts) {
      numShiftsWorked.add(shifts[n][d][s]);
    }
  }
  model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse);
}

C#

// Try to distribute the shifts evenly, so that each nurse works
// minShiftsPerNurse shifts. If this is not possible, because the total
// number of shifts is not divisible by the number of nurses, some nurses will
// be assigned one more shift.
int minShiftsPerNurse = (numShifts * numDays) / numNurses;
int maxShiftsPerNurse;
if ((numShifts * numDays) % numNurses == 0)
{
    maxShiftsPerNurse = minShiftsPerNurse;
}
else
{
    maxShiftsPerNurse = minShiftsPerNurse + 1;
}
foreach (int n in allNurses)
{
    IntVar[] numShiftsWorked = new IntVar[numDays * numShifts];
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            var key = Tuple.Create(n, d, s);
            numShiftsWorked[d * numShifts + s] = shifts[key];
        }
    }
    model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse);
}

Örneğin hedefi

Aşağıdaki hedef işlevini optimize etmek istiyoruz.

Python

model.maximize(
    sum(
        shift_requests[n][d][s] * shifts[(n, d, s)]
        for n in all_nurses
        for d in all_days
        for s in all_shifts
    )
)

C++

LinearExpr objective_expr;
for (int n : all_nurses) {
  for (int d : all_days) {
    for (int s : all_shifts) {
      if (shift_requests[n][d][s] == 1) {
        auto key = std::make_tuple(n, d, s);
        objective_expr += shifts[key] * shift_requests[n][d][s];
      }
    }
  }
}
cp_model.Maximize(objective_expr);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int n : allNurses) {
  for (int d : allDays) {
    for (int s : allShifts) {
      obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]);
    }
  }
}
model.maximize(obj);

C#

IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts];
int[] flatShiftRequests = new int[numNurses * numDays * numShifts];
foreach (int n in allNurses)
{
    foreach (int d in allDays)
    {
        foreach (int s in allShifts)
        {
            var key = Tuple.Create(n, d, s);
            flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key];
            flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s];
        }
    }
}
model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests));

s kaydırması atanırsa shift_requests[n][d][s] * shifts[(n, d, s) 1 olduğu için n hemşiresine d. günde ve bu hemşire için vardiya isteğinde bulundu (aksi halde 0) Hedef, bir isteği karşılayan atamaların sayısındaki kaymasıdır.

Çözücüyü çağır

Aşağıdaki kod çözücüyü çağırır.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Sonuçları görüntüle

Aşağıdaki kod, en uygun (belki de tek plan olmayabilir). Çıkış, hangi kaymanın ve karşılanan istek sayısını görebilirsiniz.

Python

if status == cp_model.OPTIMAL:
    print("Solution:")
    for d in all_days:
        print("Day", d)
        for n in all_nurses:
            for s in all_shifts:
                if solver.value(shifts[(n, d, s)]) == 1:
                    if shift_requests[n][d][s] == 1:
                        print("Nurse", n, "works shift", s, "(requested).")
                    else:
                        print("Nurse", n, "works shift", s, "(not requested).")
        print()
    print(
        f"Number of shift requests met = {solver.objective_value}",
        f"(out of {num_nurses * min_shifts_per_nurse})",
    )
else:
    print("No optimal solution found !")

C++

if (response.status() == CpSolverStatus::OPTIMAL) {
  LOG(INFO) << "Solution:";
  for (int d : all_days) {
    LOG(INFO) << "Day " << std::to_string(d);
    for (int n : all_nurses) {
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        if (SolutionIntegerValue(response, shifts[key]) == 1) {
          if (shift_requests[n][d][s] == 1) {
            LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                      << std::to_string(s) << " (requested).";
          } else {
            LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                      << std::to_string(s) << " (not requested).";
          }
        }
      }
    }
    LOG(INFO) << "";
  }
  LOG(INFO) << "Number of shift requests met = " << response.objective_value()
            << " (out of " << num_nurses * min_shifts_per_nurse << ")";
} else {
  LOG(INFO) << "No optimal solution found !";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.printf("Solution:%n");
  for (int d : allDays) {
    System.out.printf("Day %d%n", d);
    for (int n : allNurses) {
      for (int s : allShifts) {
        if (solver.booleanValue(shifts[n][d][s])) {
          if (shiftRequests[n][d][s] == 1) {
            System.out.printf("  Nurse %d works shift %d (requested).%n", n, s);
          } else {
            System.out.printf("  Nurse %d works shift %d (not requested).%n", n, s);
          }
        }
      }
    }
  }
  System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(),
      numNurses * minShiftsPerNurse);
} else {
  System.out.printf("No optimal solution found !");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("Solution:");
    foreach (int d in allDays)
    {
        Console.WriteLine($"Day {d}");
        foreach (int n in allNurses)
        {
            bool isWorking = false;
            foreach (int s in allShifts)
            {
                var key = Tuple.Create(n, d, s);
                if (solver.Value(shifts[key]) == 1L)
                {
                    if (shiftRequests[n, d, s] == 1)
                    {
                        Console.WriteLine($"  Nurse {n} work shift {s} (requested).");
                    }
                    else
                    {
                        Console.WriteLine($"  Nurse {n} work shift {s} (not requested).");
                    }
                }
            }
        }
    }
    Console.WriteLine(
        $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse}).");
}
else
{
    Console.WriteLine("No solution found.");
}

Programı çalıştırdığınızda şu çıktı görüntülenir:

Day 0
Nurse 1 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 2 (requested).

Day 1
Nurse 0 works shift 0 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 4 works shift 2 (requested).

Day 2
Nurse 1 works shift 2 (not requested).
Nurse 3 works shift 0 (requested).
Nurse 4 works shift 1 (requested).

Day 3
Nurse 2 works shift 0 (requested).
Nurse 3 works shift 1 (requested).
Nurse 4 works shift 2 (not requested).

Day 4
Nurse 0 works shift 2 (requested).
Nurse 1 works shift 0 (requested).
Nurse 4 works shift 1 (not requested).

Day 5
Nurse 0 works shift 2 (not requested).
Nurse 2 works shift 1 (requested).
Nurse 3 works shift 0 (requested).

Day 6
Nurse 0 works shift 1 (not requested).
Nurse 1 works shift 2 (requested).
Nurse 4 works shift 0 (not requested).

Statistics
  - Number of shift requests met = 13 (out of 20 )
  - wall time       : 0.003571 s

Programın tamamı

Vardiya istekleriyle planlama yapmak için programın tamamı aşağıda verilmiştir.

Python

"""Nurse scheduling problem with shift requests."""
from typing import Union

from ortools.sat.python import cp_model


def main() -> None:
    # This program tries to find an optimal assignment of nurses to shifts
    # (3 shifts per day, for 7 days), subject to some constraints (see below).
    # Each nurse can request to be assigned to specific shifts.
    # The optimal assignment maximizes the number of fulfilled shift requests.
    num_nurses = 5
    num_shifts = 3
    num_days = 7
    all_nurses = range(num_nurses)
    all_shifts = range(num_shifts)
    all_days = range(num_days)
    shift_requests = [
        [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]],
        [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]],
        [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]],
        [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
        [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]],
    ]

    # Creates the model.
    model = cp_model.CpModel()

    # Creates shift variables.
    # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
    shifts = {}
    for n in all_nurses:
        for d in all_days:
            for s in all_shifts:
                shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")

    # Each shift is assigned to exactly one nurse in .
    for d in all_days:
        for s in all_shifts:
            model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)

    # Each nurse works at most one shift per day.
    for n in all_nurses:
        for d in all_days:
            model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)

    # Try to distribute the shifts evenly, so that each nurse works
    # min_shifts_per_nurse shifts. If this is not possible, because the total
    # number of shifts is not divisible by the number of nurses, some nurses will
    # be assigned one more shift.
    min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
    if num_shifts * num_days % num_nurses == 0:
        max_shifts_per_nurse = min_shifts_per_nurse
    else:
        max_shifts_per_nurse = min_shifts_per_nurse + 1
    for n in all_nurses:
        num_shifts_worked: Union[cp_model.LinearExpr, int] = 0
        for d in all_days:
            for s in all_shifts:
                num_shifts_worked += shifts[(n, d, s)]
        model.add(min_shifts_per_nurse <= num_shifts_worked)
        model.add(num_shifts_worked <= max_shifts_per_nurse)

    model.maximize(
        sum(
            shift_requests[n][d][s] * shifts[(n, d, s)]
            for n in all_nurses
            for d in all_days
            for s in all_shifts
        )
    )

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL:
        print("Solution:")
        for d in all_days:
            print("Day", d)
            for n in all_nurses:
                for s in all_shifts:
                    if solver.value(shifts[(n, d, s)]) == 1:
                        if shift_requests[n][d][s] == 1:
                            print("Nurse", n, "works shift", s, "(requested).")
                        else:
                            print("Nurse", n, "works shift", s, "(not requested).")
            print()
        print(
            f"Number of shift requests met = {solver.objective_value}",
            f"(out of {num_nurses * min_shifts_per_nurse})",
        )
    else:
        print("No optimal solution found !")

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts: {solver.num_conflicts}")
    print(f"  - branches : {solver.num_branches}")
    print(f"  - wall time: {solver.wall_time}s")


if __name__ == "__main__":
    main()

C++

// Nurse scheduling problem with shift requests.
#include <stdlib.h>

#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void ScheduleRequestsSat() {
  const int num_nurses = 5;
  const int num_days = 7;
  const int num_shifts = 3;

  std::vector<int> all_nurses(num_nurses);
  std::iota(all_nurses.begin(), all_nurses.end(), 0);

  std::vector<int> all_days(num_days);
  std::iota(all_days.begin(), all_days.end(), 0);

  std::vector<int> all_shifts(num_shifts);
  std::iota(all_shifts.begin(), all_shifts.end(), 0);

  std::vector<std::vector<std::vector<int64_t>>> shift_requests = {
      {
          {0, 0, 1},
          {0, 0, 0},
          {0, 0, 0},
          {0, 0, 0},
          {0, 0, 1},
          {0, 1, 0},
          {0, 0, 1},
      },
      {
          {0, 0, 0},
          {0, 0, 0},
          {0, 1, 0},
          {0, 1, 0},
          {1, 0, 0},
          {0, 0, 0},
          {0, 0, 1},
      },
      {
          {0, 1, 0},
          {0, 1, 0},
          {0, 0, 0},
          {1, 0, 0},
          {0, 0, 0},
          {0, 1, 0},
          {0, 0, 0},
      },
      {
          {0, 0, 1},
          {0, 0, 0},
          {1, 0, 0},
          {0, 1, 0},
          {0, 0, 0},
          {1, 0, 0},
          {0, 0, 0},
      },
      {
          {0, 0, 0},
          {0, 0, 1},
          {0, 1, 0},
          {0, 0, 0},
          {1, 0, 0},
          {0, 1, 0},
          {0, 0, 0},
      },
  };

  // Creates the model.
  CpModelBuilder cp_model;

  // Creates shift variables.
  // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
  std::map<std::tuple<int, int, int>, BoolVar> shifts;
  for (int n : all_nurses) {
    for (int d : all_days) {
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        shifts[key] = cp_model.NewBoolVar().WithName(
            absl::StrFormat("shift_n%dd%ds%d", n, d, s));
      }
    }
  }

  // Each shift is assigned to exactly one nurse in the schedule period.
  for (int d : all_days) {
    for (int s : all_shifts) {
      std::vector<BoolVar> nurses;
      for (int n : all_nurses) {
        auto key = std::make_tuple(n, d, s);
        nurses.push_back(shifts[key]);
      }
      cp_model.AddExactlyOne(nurses);
    }
  }

  // Each nurse works at most one shift per day.
  for (int n : all_nurses) {
    for (int d : all_days) {
      std::vector<BoolVar> work;
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        work.push_back(shifts[key]);
      }
      cp_model.AddAtMostOne(work);
    }
  }

  // Try to distribute the shifts evenly, so that each nurse works
  // min_shifts_per_nurse shifts. If this is not possible, because the total
  // number of shifts is not divisible by the number of nurses, some nurses will
  // be assigned one more shift.
  int min_shifts_per_nurse = (num_shifts * num_days) / num_nurses;
  int max_shifts_per_nurse;
  if ((num_shifts * num_days) % num_nurses == 0) {
    max_shifts_per_nurse = min_shifts_per_nurse;
  } else {
    max_shifts_per_nurse = min_shifts_per_nurse + 1;
  }
  for (int n : all_nurses) {
    LinearExpr num_worked_shifts;
    for (int d : all_days) {
      for (int s : all_shifts) {
        auto key = std::make_tuple(n, d, s);
        num_worked_shifts += shifts[key];
      }
    }
    cp_model.AddLessOrEqual(min_shifts_per_nurse, num_worked_shifts);
    cp_model.AddLessOrEqual(num_worked_shifts, max_shifts_per_nurse);
  }

  LinearExpr objective_expr;
  for (int n : all_nurses) {
    for (int d : all_days) {
      for (int s : all_shifts) {
        if (shift_requests[n][d][s] == 1) {
          auto key = std::make_tuple(n, d, s);
          objective_expr += shifts[key] * shift_requests[n][d][s];
        }
      }
    }
  }
  cp_model.Maximize(objective_expr);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL) {
    LOG(INFO) << "Solution:";
    for (int d : all_days) {
      LOG(INFO) << "Day " << std::to_string(d);
      for (int n : all_nurses) {
        for (int s : all_shifts) {
          auto key = std::make_tuple(n, d, s);
          if (SolutionIntegerValue(response, shifts[key]) == 1) {
            if (shift_requests[n][d][s] == 1) {
              LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                        << std::to_string(s) << " (requested).";
            } else {
              LOG(INFO) << "  Nurse " << std::to_string(n) << " works shift "
                        << std::to_string(s) << " (not requested).";
            }
          }
        }
      }
      LOG(INFO) << "";
    }
    LOG(INFO) << "Number of shift requests met = " << response.objective_value()
              << " (out of " << num_nurses * min_shifts_per_nurse << ")";
  } else {
    LOG(INFO) << "No optimal solution found !";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::ScheduleRequestsSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Nurses problem with schedule requests. */
public class ScheduleRequestsSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    final int numNurses = 5;
    final int numDays = 7;
    final int numShifts = 3;

    final int[] allNurses = IntStream.range(0, numNurses).toArray();
    final int[] allDays = IntStream.range(0, numDays).toArray();
    final int[] allShifts = IntStream.range(0, numShifts).toArray();

    final int[][][] shiftRequests = new int[][][] {
        {
            {0, 0, 1},
            {0, 0, 0},
            {0, 0, 0},
            {0, 0, 0},
            {0, 0, 1},
            {0, 1, 0},
            {0, 0, 1},
        },
        {
            {0, 0, 0},
            {0, 0, 0},
            {0, 1, 0},
            {0, 1, 0},
            {1, 0, 0},
            {0, 0, 0},
            {0, 0, 1},
        },
        {
            {0, 1, 0},
            {0, 1, 0},
            {0, 0, 0},
            {1, 0, 0},
            {0, 0, 0},
            {0, 1, 0},
            {0, 0, 0},
        },
        {
            {0, 0, 1},
            {0, 0, 0},
            {1, 0, 0},
            {0, 1, 0},
            {0, 0, 0},
            {1, 0, 0},
            {0, 0, 0},
        },
        {
            {0, 0, 0},
            {0, 0, 1},
            {0, 1, 0},
            {0, 0, 0},
            {1, 0, 0},
            {0, 1, 0},
            {0, 0, 0},
        },
    };

    // Creates the model.
    CpModel model = new CpModel();

    // Creates shift variables.
    // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
    Literal[][][] shifts = new Literal[numNurses][numDays][numShifts];
    for (int n : allNurses) {
      for (int d : allDays) {
        for (int s : allShifts) {
          shifts[n][d][s] = model.newBoolVar("shifts_n" + n + "d" + d + "s" + s);
        }
      }
    }

    // Each shift is assigned to exactly one nurse in the schedule period.
    for (int d : allDays) {
      for (int s : allShifts) {
        List<Literal> nurses = new ArrayList<>();
        for (int n : allNurses) {
          nurses.add(shifts[n][d][s]);
        }
        model.addExactlyOne(nurses);
      }
    }

    // Each nurse works at most one shift per day.
    for (int n : allNurses) {
      for (int d : allDays) {
        List<Literal> work = new ArrayList<>();
        for (int s : allShifts) {
          work.add(shifts[n][d][s]);
        }
        model.addAtMostOne(work);
      }
    }

    // Try to distribute the shifts evenly, so that each nurse works
    // minShiftsPerNurse shifts. If this is not possible, because the total
    // number of shifts is not divisible by the number of nurses, some nurses will
    // be assigned one more shift.
    int minShiftsPerNurse = (numShifts * numDays) / numNurses;
    int maxShiftsPerNurse;
    if ((numShifts * numDays) % numNurses == 0) {
      maxShiftsPerNurse = minShiftsPerNurse;
    } else {
      maxShiftsPerNurse = minShiftsPerNurse + 1;
    }
    for (int n : allNurses) {
      LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder();
      for (int d : allDays) {
        for (int s : allShifts) {
          numShiftsWorked.add(shifts[n][d][s]);
        }
      }
      model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse, maxShiftsPerNurse);
    }

    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int n : allNurses) {
      for (int d : allDays) {
        for (int s : allShifts) {
          obj.addTerm(shifts[n][d][s], shiftRequests[n][d][s]);
        }
      }
    }
    model.maximize(obj);

    // Creates a solver and solves the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.printf("Solution:%n");
      for (int d : allDays) {
        System.out.printf("Day %d%n", d);
        for (int n : allNurses) {
          for (int s : allShifts) {
            if (solver.booleanValue(shifts[n][d][s])) {
              if (shiftRequests[n][d][s] == 1) {
                System.out.printf("  Nurse %d works shift %d (requested).%n", n, s);
              } else {
                System.out.printf("  Nurse %d works shift %d (not requested).%n", n, s);
              }
            }
          }
        }
      }
      System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(),
          numNurses * minShiftsPerNurse);
    } else {
      System.out.printf("No optimal solution found !");
    }
    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private ScheduleRequestsSat() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class ScheduleRequestsSat
{
    public static void Main(String[] args)
    {
        const int numNurses = 5;
        const int numDays = 7;
        const int numShifts = 3;

        int[] allNurses = Enumerable.Range(0, numNurses).ToArray();
        int[] allDays = Enumerable.Range(0, numDays).ToArray();
        int[] allShifts = Enumerable.Range(0, numShifts).ToArray();

        int[,,] shiftRequests = new int[,,] {
            {
                { 0, 0, 1 },
                { 0, 0, 0 },
                { 0, 0, 0 },
                { 0, 0, 0 },
                { 0, 0, 1 },
                { 0, 1, 0 },
                { 0, 0, 1 },
            },
            {
                { 0, 0, 0 },
                { 0, 0, 0 },
                { 0, 1, 0 },
                { 0, 1, 0 },
                { 1, 0, 0 },
                { 0, 0, 0 },
                { 0, 0, 1 },
            },
            {
                { 0, 1, 0 },
                { 0, 1, 0 },
                { 0, 0, 0 },
                { 1, 0, 0 },
                { 0, 0, 0 },
                { 0, 1, 0 },
                { 0, 0, 0 },
            },
            {
                { 0, 0, 1 },
                { 0, 0, 0 },
                { 1, 0, 0 },
                { 0, 1, 0 },
                { 0, 0, 0 },
                { 1, 0, 0 },
                { 0, 0, 0 },
            },
            {
                { 0, 0, 0 },
                { 0, 0, 1 },
                { 0, 1, 0 },
                { 0, 0, 0 },
                { 1, 0, 0 },
                { 0, 1, 0 },
                { 0, 0, 0 },
            },
        };

        // Creates the model.
        CpModel model = new CpModel();

        // Creates shift variables.
        // shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
        Dictionary<Tuple<int, int, int>, IntVar> shifts = new Dictionary<Tuple<int, int, int>, IntVar>();
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    shifts.Add(Tuple.Create(n, d, s), model.NewBoolVar($"shifts_n{n}d{d}s{s}"));
                }
            }
        }

        // Each shift is assigned to exactly one nurse in the schedule period.
        foreach (int d in allDays)
        {
            foreach (int s in allShifts)
            {
                IntVar[] x = new IntVar[numNurses];
                foreach (int n in allNurses)
                {
                    var key = Tuple.Create(n, d, s);
                    x[n] = shifts[key];
                }
                model.Add(LinearExpr.Sum(x) == 1);
            }
        }

        // Each nurse works at most one shift per day.
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                IntVar[] x = new IntVar[numShifts];
                foreach (int s in allShifts)
                {
                    var key = Tuple.Create(n, d, s);
                    x[s] = shifts[key];
                }
                model.Add(LinearExpr.Sum(x) <= 1);
            }
        }

        // Try to distribute the shifts evenly, so that each nurse works
        // minShiftsPerNurse shifts. If this is not possible, because the total
        // number of shifts is not divisible by the number of nurses, some nurses will
        // be assigned one more shift.
        int minShiftsPerNurse = (numShifts * numDays) / numNurses;
        int maxShiftsPerNurse;
        if ((numShifts * numDays) % numNurses == 0)
        {
            maxShiftsPerNurse = minShiftsPerNurse;
        }
        else
        {
            maxShiftsPerNurse = minShiftsPerNurse + 1;
        }
        foreach (int n in allNurses)
        {
            IntVar[] numShiftsWorked = new IntVar[numDays * numShifts];
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    var key = Tuple.Create(n, d, s);
                    numShiftsWorked[d * numShifts + s] = shifts[key];
                }
            }
            model.AddLinearConstraint(LinearExpr.Sum(numShiftsWorked), minShiftsPerNurse, maxShiftsPerNurse);
        }

        IntVar[] flatShifts = new IntVar[numNurses * numDays * numShifts];
        int[] flatShiftRequests = new int[numNurses * numDays * numShifts];
        foreach (int n in allNurses)
        {
            foreach (int d in allDays)
            {
                foreach (int s in allShifts)
                {
                    var key = Tuple.Create(n, d, s);
                    flatShifts[n * numDays * numShifts + d * numShifts + s] = shifts[key];
                    flatShiftRequests[n * numDays * numShifts + d * numShifts + s] = shiftRequests[n, d, s];
                }
            }
        }
        model.Maximize(LinearExpr.WeightedSum(flatShifts, flatShiftRequests));

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("Solution:");
            foreach (int d in allDays)
            {
                Console.WriteLine($"Day {d}");
                foreach (int n in allNurses)
                {
                    bool isWorking = false;
                    foreach (int s in allShifts)
                    {
                        var key = Tuple.Create(n, d, s);
                        if (solver.Value(shifts[key]) == 1L)
                        {
                            if (shiftRequests[n, d, s] == 1)
                            {
                                Console.WriteLine($"  Nurse {n} work shift {s} (requested).");
                            }
                            else
                            {
                                Console.WriteLine($"  Nurse {n} work shift {s} (not requested).");
                            }
                        }
                    }
                }
            }
            Console.WriteLine(
                $"Number of shift requests met = {solver.ObjectiveValue} (out of {numNurses * minShiftsPerNurse}).");
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}