مشكلة محل الوظيفة

تتمثل إحدى مشكلات الجدولة الشائعة في متجر الوظائف، حيث يتم عرض وظائف متعددة على عدة أجهزة.

تتكون كل مهمة من سلسلة من المهام والتي يجب القيام بها في جدول ترتيب واحد، ويجب معالجة كل مهمة على جهاز معين. على سبيل المثال، قد تكون المهمة تصنيع سلعة استهلاكية واحدة، مثل سيارة. تكمن المشكلة في جدولة المهام على الأجهزة لتقليل length من الجدول الزمني، أي الوقت الذي يستغرقه إكمال جميع المهام.

هناك عدة قيود لمشكلة مكان العمل:

  • لا يمكن بدء مهمة ما حتى تصبح المهمة السابقة لهذه الوظيفة مكتملة.
  • لا يمكن لأي جهاز أن يعمل إلا في مهمة واحدة في كل مرة.
  • يجب تنفيذ المهمة بمجرد بدئها حتى تكتمل.

مثال على المسألة

يوجد أدناه مثال بسيط لمشكلة في متجر الوظائف، حيث يتم تصنيف كل مهمة باستخدام زوج من الأرقام (m، p) حيث m هو رقم الجهاز الذي يمكن لأداء المهمة يجب معالجة الطلب في الحساب، ويكون p هو وقت معالجة المهمة، حيث مقدار الوقت الذي يتطلبه. (يبدأ ترقيم المهام والآلات من 0.)

  • المهمة 0 = [(0, 3), (1, 2), (2, 2)]
  • المهمة 1 = [(0, 2), (2, 1), (1, 4)]
  • المهمة 2 = [(1, 4), (2, 3)]

في المثال، تتضمن الوظيفة 0 ثلاث مهام. يجب معالجة العنصر الأول (0, 3)، على الجهاز 0 في 3 وحدات زمنية. أما الثاني، (1، 2)، فيجب أن تتم معالجته على الجهاز 1 في وحدتين زمنيتين، وهكذا. في المجموع، هناك ثماني مهام.

حل المشكلة

يتمثل حل مشكلة مكان العمل في تخصيص وقت بدء لكل مهمة تفي بالقيود المذكورة أعلاه. يوضح الرسم التخطيطي أدناه أحد الحلول الممكنة للمشكلة: الجدول الزمني للجدول الزمني دون المستوى المطلوب في ورشة العمل

يمكنك التحقق من جدولة المهام لكل مهمة في وقت غير متداخل الفواصل الزمنية بالترتيب الموضح في المشكلة.

يبلغ طول هذا الحل 12، وهي المرة الأولى التي تكون فيها جميع المهام الثلاث كاملة. ومع ذلك، وكما سترى أدناه، هذا ليس الحل الأمثل المشكلة.

المتغيرات والقيود المفروضة على المشكلة

يصف هذا القسم كيفية إعداد المتغيرات والقيود المشكلة. أولاً، لنفترض أن الدالة task(i, j) تشير إلى المهمة j في تسلسل الوظيفة i. بالنسبة مثال، تشير task(0, 2) إلى المهمة الثانية للمهمة 0، والتي تتجاوب مع الزوج (1, 2) في وصف المشكلة.

بعد ذلك، حدِّد ti, j ليكون وقت بدء task(i, j). تشير رسالة الأشكال البيانية ti، j هي المتغيّرات في مشكلة متجر الوظائف. العثور على يتضمن تحديد قيم هذه المتغيرات التي تلبي المتطلب الخاص بالمشكلة.

هناك نوعان من القيود لمشكلة متجر العمل:

  • قيود الأولوية - تنشأ عن الشرط الذي مهمتين متتاليتين في نفس الوظيفة، يجب إكمال الأولى قبل والثانية يمكن البدء من خلالها. على سبيل المثال، task(0, 2) وtask(0, 3) هما. المهام المتتالية للوظيفة 0. بما أنّ وقت معالجة task(0, 2) هو 2، سيكون وقت بدء يجب أن تكون "task(0, 3)" على الأقل وحدتين زمنيتين بعد وقت بدء المهمة 2. (ربما المهمة 2 هي طلاء الباب، ويستغرق الطلاء ساعتين dry.) نتيجة لذلك، تحصل على القيد التالي:
    • t0, 2 + 2 <= t0, 3
  • عدم وجود قيود متداخلة - تنشأ هذه القيود عن القيود التي جهازك لا يمكنها العمل على مهمتين في نفس الوقت. على سبيل المثال، تتم معالجة كل من المهمة(0 و2) والمهمة(2 1) على الجهاز 1. وبما أنّ وقتَي المعالجة 2 و4 على التوالي، يكون أحد الخيارات التالية: يجب أن تخضع القيود لما يلي:
    • t0 و2 + 2 <= t2، 1 (في حال جدولة task(0, 2) قبل task(2, 1)) أو
    • t2 و1 + 4 <= t0، 2 (في حال جدولة task(2, 1) قبل task(0, 2)).

هدف المشكلة

الهدف من مشكلة متجر الوظائف هو تقليل makespan: المدة الزمنية من أقرب وقت بدء للوظائف إلى آخر وقت انتهاء.

حل البرنامج

توضح الأقسام التالية العناصر الرئيسية للبرنامج الذي يحل مشكلة في محل توظيف.

استيراد المكتبات

يستورد الرمز التالي المكتبة المطلوبة.

Python

import collections
from ortools.sat.python import cp_model

C++‎

#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

لغة Java

import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

#C

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

تعريف البيانات

بعد ذلك، يحدد البرنامج البيانات الخاصة بالمشكلة.

Python

jobs_data = [  # task = (machine_id, processing_time).
    [(0, 3), (1, 2), (2, 2)],  # Job0
    [(0, 2), (2, 1), (1, 4)],  # Job1
    [(1, 4), (2, 3)],  # Job2
]

machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)

C++‎

using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
using Job = std::vector<Task>;
std::vector<Job> jobs_data = {
    {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
    {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
    {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
};

int64_t num_machines = 0;
for (const auto& job : jobs_data) {
  for (const auto& [machine, _] : job) {
    num_machines = std::max(num_machines, 1 + machine);
  }
}

std::vector<int> all_machines(num_machines);
std::iota(all_machines.begin(), all_machines.end(), 0);

// Computes horizon dynamically as the sum of all durations.
int64_t horizon = 0;
for (const auto& job : jobs_data) {
  for (const auto& [_, time] : job) {
    horizon += time;
  }
}

لغة Java

class Task {
  int machine;
  int duration;
  Task(int machine, int duration) {
    this.machine = machine;
    this.duration = duration;
  }
}

final List<List<Task>> allJobs =
    Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
        Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
        Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
    );

int numMachines = 1;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    numMachines = max(numMachines, 1 + task.machine);
  }
}
final int[] allMachines = IntStream.range(0, numMachines).toArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    horizon += task.duration;
  }
}

#C

var allJobs =
    new[] {
        new[] {
            // job0
            new { machine = 0, duration = 3 }, // task0
            new { machine = 1, duration = 2 }, // task1
            new { machine = 2, duration = 2 }, // task2
        }
            .ToList(),
        new[] {
            // job1
            new { machine = 0, duration = 2 }, // task0
            new { machine = 2, duration = 1 }, // task1
            new { machine = 1, duration = 4 }, // task2
        }
            .ToList(),
        new[] {
            // job2
            new { machine = 1, duration = 4 }, // task0
            new { machine = 2, duration = 3 }, // task1
        }
            .ToList(),
    }
        .ToList();

int numMachines = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        numMachines = Math.Max(numMachines, 1 + task.machine);
    }
}
int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        horizon += task.duration;
    }
}

تعريف النموذج

يوضح الرمز التالي نموذج المشكلة.

Python

model = cp_model.CpModel()

C++‎

CpModelBuilder cp_model;

لغة Java

CpModel model = new CpModel();

#C

CpModel model = new CpModel();

تحديد المتغيرات

تحدد التعليمة البرمجية التالية المتغيرات في المشكلة.

Python

# Named tuple to store information about created variables.
task_type = collections.namedtuple("task_type", "start end interval")
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple(
    "assigned_task_type", "start job index duration"
)

# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)

for job_id, job in enumerate(jobs_data):
    for task_id, task in enumerate(job):
        machine, duration = task
        suffix = f"_{job_id}_{task_id}"
        start_var = model.new_int_var(0, horizon, "start" + suffix)
        end_var = model.new_int_var(0, horizon, "end" + suffix)
        interval_var = model.new_interval_var(
            start_var, duration, end_var, "interval" + suffix
        )
        all_tasks[job_id, task_id] = task_type(
            start=start_var, end=end_var, interval=interval_var
        )
        machine_to_intervals[machine].append(interval_var)

C++‎

struct TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
};

using TaskID = std::tuple<int, int>;  // (job_id, task_id)
std::map<TaskID, TaskType> all_tasks;
std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size(); ++task_id) {
    const auto [machine, duration] = job[task_id];
    std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
    IntVar start = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("start") + suffix);
    IntVar end = cp_model.NewIntVar({0, horizon})
                     .WithName(std::string("end") + suffix);
    IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                               .WithName(std::string("interval") + suffix);

    TaskID key = std::make_tuple(job_id, task_id);
    all_tasks.emplace(key, TaskType{/*.start=*/start,
                                    /*.end=*/end,
                                    /*.interval=*/interval});
    machine_to_intervals[machine].push_back(interval);
  }
}

لغة Java

class TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
}
Map<List<Integer>, TaskType> allTasks = new HashMap<>();
Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size(); ++taskID) {
    Task task = job.get(taskID);
    String suffix = "_" + jobID + "_" + taskID;

    TaskType taskType = new TaskType();
    taskType.start = model.newIntVar(0, horizon, "start" + suffix);
    taskType.end = model.newIntVar(0, horizon, "end" + suffix);
    taskType.interval = model.newIntervalVar(
        taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

    List<Integer> key = Arrays.asList(jobID, taskID);
    allTasks.put(key, taskType);
    machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
    machineToIntervals.get(task.machine).add(taskType.interval);
  }
}

#C

Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
    new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count(); ++taskID)
    {
        var task = job[taskID];
        String suffix = $"_{jobID}_{taskID}";
        IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
        IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
        IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
        var key = Tuple.Create(jobID, taskID);
        allTasks[key] = Tuple.Create(start, end, interval);
        if (!machineToIntervals.ContainsKey(task.machine))
        {
            machineToIntervals.Add(task.machine, new List<IntervalVar>());
        }
        machineToIntervals[task.machine].Add(interval);
    }
}

لكل مهمة ومهمة، يستخدم البرنامج النموذج NewIntVar/new_int_var/newIntVar لإنشاء المتغيّرات:

  • start_var: وقت بدء المهمة
  • end_var: وقت انتهاء المهمة

الحد الأعلى لـ start_var وend_var هو horizon، وهو مجموع أوقات المعالجة لجميع المهام في جميع الوظائف. الملف "horizon" كبير بما يكفي لإكمال جميع المهام للسبب التالي: إذا قمت بجدولة المهام في فواصل زمنية غير متداخلة ( الحل)، إجمالي طول الجدول الزمني هو horizon بالضبط. لذا فإن المحور الرأسي هو في الواقع لا يمكن أن تكون مدة الحل الأمثل أكبر من horizon.

وبعد ذلك، يستخدم البرنامج السمة NewIntervalVar/new_interval_var/newIntervalVar لإنشاء متغير فاصل — الذي تعتبر قيمته متغيرًا زمنيًا الفاصل - للمهمة. مدخلات هذه الطريقة هي:

  • وقت بدء المهمة.
  • طول الفاصل الزمني للمهمة.
  • وقت انتهاء المهمة.
  • اسم المتغير الفاصل.

في أي حل، يجب أن يساوي end_var طرح start_var duration.

تحديد القيود

تحدد التعليمة البرمجية التالية القيود المفروضة على المشكلة.

Python

# Create and add disjunctive constraints.
for machine in all_machines:
    model.add_no_overlap(machine_to_intervals[machine])

# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
    for task_id in range(len(job) - 1):
        model.add(
            all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
        )

C++‎

// Create and add disjunctive constraints.
for (const auto machine : all_machines) {
  cp_model.AddNoOverlap(machine_to_intervals[machine]);
}

// Precedences inside a job.
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
    TaskID key = std::make_tuple(job_id, task_id);
    TaskID next_key = std::make_tuple(job_id, task_id + 1);
    cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
  }
}

لغة Java

// Create and add disjunctive constraints.
for (int machine : allMachines) {
  List<IntervalVar> list = machineToIntervals.get(machine);
  model.addNoOverlap(list);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
    List<Integer> prevKey = Arrays.asList(jobID, taskID);
    List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
    model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
  }
}

#C

// Create and add disjunctive constraints.
foreach (int machine in allMachines)
{
    model.AddNoOverlap(machineToIntervals[machine]);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
    {
        var key = Tuple.Create(jobID, taskID);
        var nextKey = Tuple.Create(jobID, taskID + 1);
        model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
    }
}

يستخدِم البرنامج طريقة AddNoOverlap/add_no_overlap/addNoOverlap الخاصة بالنموذج. لإنشاء قيود عدم التداخل، والتي تمنع المهام نفس الجهاز من التداخل في الوقت.

بعد ذلك، يضيف البرنامج قيود الأسبقية، والتي تمنع المهام المتتالية لنفس الوظيفة من التداخل في الوقت. لكل وظيفة لكل مهمة في الوظيفة، تتم إضافة قيد خطي لتحديد أن نهاية وقت حدوث المهمة قبل وقت بدء المهمة التالية في الوظيفة.

تحديد الهدف

تحدد التعليمة البرمجية التالية الهدف من المشكلة.

Python

# Makespan objective.
obj_var = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(
    obj_var,
    [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
)
model.minimize(obj_var)

C++‎

// Makespan objective.
IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

std::vector<IntVar> ends;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  TaskID key = std::make_tuple(job_id, job.size() - 1);
  ends.push_back(all_tasks[key].end);
}
cp_model.AddMaxEquality(obj_var, ends);
cp_model.Minimize(obj_var);

لغة Java

// Makespan objective.
IntVar objVar = model.newIntVar(0, horizon, "makespan");
List<IntVar> ends = new ArrayList<>();
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  List<Integer> key = Arrays.asList(jobID, job.size() - 1);
  ends.add(allTasks.get(key).end);
}
model.addMaxEquality(objVar, ends);
model.minimize(objVar);

#C

// Makespan objective.
IntVar objVar = model.NewIntVar(0, horizon, "makespan");

List<IntVar> ends = new List<IntVar>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    var key = Tuple.Create(jobID, job.Count() - 1);
    ends.Add(allTasks[key].Item2);
}
model.AddMaxEquality(objVar, ends);
model.Minimize(objVar);

تنشئ هذه التعليمة البرمجية متغير موضوعي وتقيده ليكون الحد الأقصى نهاية جميع الوظائف.

استدعاء أداة الحلّ

تستدعي التعليمة البرمجية التالية أداة الحل.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++‎

const CpSolverResponse response = Solve(cp_model.Build());

لغة Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

#C

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

عرض النتائج

يعرض التعليمة البرمجية التالية النتائج، بما في ذلك الجدول الزمني والمهمة الأمثل الفترات.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print("Solution:")
    # Create one list of assigned tasks per machine.
    assigned_jobs = collections.defaultdict(list)
    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine = task[0]
            assigned_jobs[machine].append(
                assigned_task_type(
                    start=solver.value(all_tasks[job_id, task_id].start),
                    job=job_id,
                    index=task_id,
                    duration=task[1],
                )
            )

    # Create per machine output lines.
    output = ""
    for machine in all_machines:
        # Sort by starting time.
        assigned_jobs[machine].sort()
        sol_line_tasks = "Machine " + str(machine) + ": "
        sol_line = "           "

        for assigned_task in assigned_jobs[machine]:
            name = f"job_{assigned_task.job}_task_{assigned_task.index}"
            # add spaces to output to align columns.
            sol_line_tasks += f"{name:15}"

            start = assigned_task.start
            duration = assigned_task.duration
            sol_tmp = f"[{start},{start + duration}]"
            # add spaces to output to align columns.
            sol_line += f"{sol_tmp:15}"

        sol_line += "\n"
        sol_line_tasks += "\n"
        output += sol_line_tasks
        output += sol_line

    # Finally print the solution found.
    print(f"Optimal Schedule Length: {solver.objective_value}")
    print(output)
else:
    print("No solution found.")

C++‎

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Solution:";
  // create one list of assigned tasks per machine.
  struct AssignedTaskType {
    int job_id;
    int task_id;
    int64_t start;
    int64_t duration;

    bool operator<(const AssignedTaskType& rhs) const {
      return std::tie(this->start, this->duration) <
             std::tie(rhs.start, rhs.duration);
    }
  };

  std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      TaskID key = std::make_tuple(job_id, task_id);
      int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
      assigned_jobs[machine].push_back(
          AssignedTaskType{/*.job_id=*/job_id,
                           /*.task_id=*/task_id,
                           /*.start=*/start,
                           /*.duration=*/duration});
    }
  }

  // Create per machine output lines.
  std::string output = "";
  for (const auto machine : all_machines) {
    // Sort by starting time.
    std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
    std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
    std::string sol_line = "           ";

    for (const auto& assigned_task : assigned_jobs[machine]) {
      std::string name = absl::StrFormat(
          "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
      // Add spaces to output to align columns.
      sol_line_tasks += absl::StrFormat("%-15s", name);

      int64_t start = assigned_task.start;
      int64_t duration = assigned_task.duration;
      std::string sol_tmp =
          absl::StrFormat("[%i,%i]", start, start + duration);
      // Add spaces to output to align columns.
      sol_line += absl::StrFormat("%-15s", sol_tmp);
    }
    output += sol_line_tasks + "\n";
    output += sol_line + "\n";
  }
  // Finally print the solution found.
  LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
  LOG(INFO) << "\n" << output;
} else {
  LOG(INFO) << "No solution found.";
}

لغة Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  class AssignedTask {
    int jobID;
    int taskID;
    int start;
    int duration;
    // Ctor
    AssignedTask(int jobID, int taskID, int start, int duration) {
      this.jobID = jobID;
      this.taskID = taskID;
      this.start = start;
      this.duration = duration;
    }
  }
  class SortTasks implements Comparator<AssignedTask> {
    @Override
    public int compare(AssignedTask a, AssignedTask b) {
      if (a.start != b.start) {
        return a.start - b.start;
      } else {
        return a.duration - b.duration;
      }
    }
  }
  System.out.println("Solution:");
  // Create one list of assigned tasks per machine.
  Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
  for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
    List<Task> job = allJobs.get(jobID);
    for (int taskID = 0; taskID < job.size(); ++taskID) {
      Task task = job.get(taskID);
      List<Integer> key = Arrays.asList(jobID, taskID);
      AssignedTask assignedTask = new AssignedTask(
          jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
      assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
      assignedJobs.get(task.machine).add(assignedTask);
    }
  }

  // Create per machine output lines.
  String output = "";
  for (int machine : allMachines) {
    // Sort by starting time.
    Collections.sort(assignedJobs.get(machine), new SortTasks());
    String solLineTasks = "Machine " + machine + ": ";
    String solLine = "           ";

    for (AssignedTask assignedTask : assignedJobs.get(machine)) {
      String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
      // Add spaces to output to align columns.
      solLineTasks += String.format("%-15s", name);

      String solTmp =
          "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
      // Add spaces to output to align columns.
      solLine += String.format("%-15s", solTmp);
    }
    output += solLineTasks + "%n";
    output += solLine + "%n";
  }
  System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
  System.out.printf(output);
} else {
  System.out.println("No solution found.");
}

#C

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("Solution:");

    Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
    for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
    {
        var job = allJobs[jobID];
        for (int taskID = 0; taskID < job.Count(); ++taskID)
        {
            var task = job[taskID];
            var key = Tuple.Create(jobID, taskID);
            int start = (int)solver.Value(allTasks[key].Item1);
            if (!assignedJobs.ContainsKey(task.machine))
            {
                assignedJobs.Add(task.machine, new List<AssignedTask>());
            }
            assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
        }
    }

    // Create per machine output lines.
    String output = "";
    foreach (int machine in allMachines)
    {
        // Sort by starting time.
        assignedJobs[machine].Sort();
        String solLineTasks = $"Machine {machine}: ";
        String solLine = "           ";

        foreach (var assignedTask in assignedJobs[machine])
        {
            String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
            // Add spaces to output to align columns.
            solLineTasks += $"{name,-15}";

            String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
            // Add spaces to output to align columns.
            solLine += $"{solTmp,-15}";
        }
        output += solLineTasks + "\n";
        output += solLine + "\n";
    }
    // Finally print the solution found.
    Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
    Console.WriteLine($"\n{output}");
}
else
{
    Console.WriteLine("No solution found.");
}

يتم عرض الجدول الأمثل أدناه:

 Optimal Schedule Length: 11
Machine 0: job_0_0   job_1_0
           [0,3]     [3,5]
Machine 1: job_2_0   job_0_1   job_1_2
           [0,4]     [4,6]     [7,11]
Machine 2: job_1_1   job_0_2   job_2_1
           [5,6]     [6,8]     [8,11]

قد يتساءل القارئون ذوو العيون المتطفلة الذين يفحصون الجهاز 1 عن سبب جدولة job_1_2 في الوقت 7 بدلاً من الوقت 6. كلاهما حلان صالحان، لكن تذكر: الهدف هو تقليل التصميم. لن يؤدي نقل الوظيفة_1_2 في وقت مبكر إلى تقليل مدى التوفّر ، وبالتالي فإن الحلين متساويان من منظور أداة الحلّ.

البرنامج بالكامل

أخيرًا، إليك البرنامج الكامل لمشكلة متجر العمل.

Python

"""Minimal jobshop example."""
import collections
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal jobshop problem."""
    # Data.
    jobs_data = [  # task = (machine_id, processing_time).
        [(0, 3), (1, 2), (2, 2)],  # Job0
        [(0, 2), (2, 1), (1, 4)],  # Job1
        [(1, 4), (2, 3)],  # Job2
    ]

    machines_count = 1 + max(task[0] for job in jobs_data for task in job)
    all_machines = range(machines_count)
    # Computes horizon dynamically as the sum of all durations.
    horizon = sum(task[1] for job in jobs_data for task in job)

    # Create the model.
    model = cp_model.CpModel()

    # Named tuple to store information about created variables.
    task_type = collections.namedtuple("task_type", "start end interval")
    # Named tuple to manipulate solution information.
    assigned_task_type = collections.namedtuple(
        "assigned_task_type", "start job index duration"
    )

    # Creates job intervals and add to the corresponding machine lists.
    all_tasks = {}
    machine_to_intervals = collections.defaultdict(list)

    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine, duration = task
            suffix = f"_{job_id}_{task_id}"
            start_var = model.new_int_var(0, horizon, "start" + suffix)
            end_var = model.new_int_var(0, horizon, "end" + suffix)
            interval_var = model.new_interval_var(
                start_var, duration, end_var, "interval" + suffix
            )
            all_tasks[job_id, task_id] = task_type(
                start=start_var, end=end_var, interval=interval_var
            )
            machine_to_intervals[machine].append(interval_var)

    # Create and add disjunctive constraints.
    for machine in all_machines:
        model.add_no_overlap(machine_to_intervals[machine])

    # Precedences inside a job.
    for job_id, job in enumerate(jobs_data):
        for task_id in range(len(job) - 1):
            model.add(
                all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
            )

    # Makespan objective.
    obj_var = model.new_int_var(0, horizon, "makespan")
    model.add_max_equality(
        obj_var,
        [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
    )
    model.minimize(obj_var)

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print("Solution:")
        # Create one list of assigned tasks per machine.
        assigned_jobs = collections.defaultdict(list)
        for job_id, job in enumerate(jobs_data):
            for task_id, task in enumerate(job):
                machine = task[0]
                assigned_jobs[machine].append(
                    assigned_task_type(
                        start=solver.value(all_tasks[job_id, task_id].start),
                        job=job_id,
                        index=task_id,
                        duration=task[1],
                    )
                )

        # Create per machine output lines.
        output = ""
        for machine in all_machines:
            # Sort by starting time.
            assigned_jobs[machine].sort()
            sol_line_tasks = "Machine " + str(machine) + ": "
            sol_line = "           "

            for assigned_task in assigned_jobs[machine]:
                name = f"job_{assigned_task.job}_task_{assigned_task.index}"
                # add spaces to output to align columns.
                sol_line_tasks += f"{name:15}"

                start = assigned_task.start
                duration = assigned_task.duration
                sol_tmp = f"[{start},{start + duration}]"
                # add spaces to output to align columns.
                sol_line += f"{sol_tmp:15}"

            sol_line += "\n"
            sol_line_tasks += "\n"
            output += sol_line_tasks
            output += sol_line

        # Finally print the solution found.
        print(f"Optimal Schedule Length: {solver.objective_value}")
        print(output)
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts: {solver.num_conflicts}")
    print(f"  - branches : {solver.num_branches}")
    print(f"  - wall time: {solver.wall_time}s")


if __name__ == "__main__":
    main()

C++‎

// Nurse scheduling problem with shift requests.
#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MinimalJobshopSat() {
  using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
  using Job = std::vector<Task>;
  std::vector<Job> jobs_data = {
      {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
      {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
      {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
  };

  int64_t num_machines = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [machine, _] : job) {
      num_machines = std::max(num_machines, 1 + machine);
    }
  }

  std::vector<int> all_machines(num_machines);
  std::iota(all_machines.begin(), all_machines.end(), 0);

  // Computes horizon dynamically as the sum of all durations.
  int64_t horizon = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [_, time] : job) {
      horizon += time;
    }
  }

  // Creates the model.
  CpModelBuilder cp_model;

  struct TaskType {
    IntVar start;
    IntVar end;
    IntervalVar interval;
  };

  using TaskID = std::tuple<int, int>;  // (job_id, task_id)
  std::map<TaskID, TaskType> all_tasks;
  std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
      IntVar start = cp_model.NewIntVar({0, horizon})
                         .WithName(std::string("start") + suffix);
      IntVar end = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("end") + suffix);
      IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                                 .WithName(std::string("interval") + suffix);

      TaskID key = std::make_tuple(job_id, task_id);
      all_tasks.emplace(key, TaskType{/*.start=*/start,
                                      /*.end=*/end,
                                      /*.interval=*/interval});
      machine_to_intervals[machine].push_back(interval);
    }
  }

  // Create and add disjunctive constraints.
  for (const auto machine : all_machines) {
    cp_model.AddNoOverlap(machine_to_intervals[machine]);
  }

  // Precedences inside a job.
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
      TaskID key = std::make_tuple(job_id, task_id);
      TaskID next_key = std::make_tuple(job_id, task_id + 1);
      cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
    }
  }

  // Makespan objective.
  IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

  std::vector<IntVar> ends;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    TaskID key = std::make_tuple(job_id, job.size() - 1);
    ends.push_back(all_tasks[key].end);
  }
  cp_model.AddMaxEquality(obj_var, ends);
  cp_model.Minimize(obj_var);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Solution:";
    // create one list of assigned tasks per machine.
    struct AssignedTaskType {
      int job_id;
      int task_id;
      int64_t start;
      int64_t duration;

      bool operator<(const AssignedTaskType& rhs) const {
        return std::tie(this->start, this->duration) <
               std::tie(rhs.start, rhs.duration);
      }
    };

    std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
    for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
      const auto& job = jobs_data[job_id];
      for (int task_id = 0; task_id < job.size(); ++task_id) {
        const auto [machine, duration] = job[task_id];
        TaskID key = std::make_tuple(job_id, task_id);
        int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
        assigned_jobs[machine].push_back(
            AssignedTaskType{/*.job_id=*/job_id,
                             /*.task_id=*/task_id,
                             /*.start=*/start,
                             /*.duration=*/duration});
      }
    }

    // Create per machine output lines.
    std::string output = "";
    for (const auto machine : all_machines) {
      // Sort by starting time.
      std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
      std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
      std::string sol_line = "           ";

      for (const auto& assigned_task : assigned_jobs[machine]) {
        std::string name = absl::StrFormat(
            "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
        // Add spaces to output to align columns.
        sol_line_tasks += absl::StrFormat("%-15s", name);

        int64_t start = assigned_task.start;
        int64_t duration = assigned_task.duration;
        std::string sol_tmp =
            absl::StrFormat("[%i,%i]", start, start + duration);
        // Add spaces to output to align columns.
        sol_line += absl::StrFormat("%-15s", sol_tmp);
      }
      output += sol_line_tasks + "\n";
      output += sol_line + "\n";
    }
    // Finally print the solution found.
    LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
    LOG(INFO) << "\n" << output;
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MinimalJobshopSat();
  return EXIT_SUCCESS;
}

لغة Java

package com.google.ortools.sat.samples;
import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

/** Minimal Jobshop problem. */
public class MinimalJobshopSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    class Task {
      int machine;
      int duration;
      Task(int machine, int duration) {
        this.machine = machine;
        this.duration = duration;
      }
    }

    final List<List<Task>> allJobs =
        Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
            Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
            Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
        );

    int numMachines = 1;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        numMachines = max(numMachines, 1 + task.machine);
      }
    }
    final int[] allMachines = IntStream.range(0, numMachines).toArray();

    // Computes horizon dynamically as the sum of all durations.
    int horizon = 0;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        horizon += task.duration;
      }
    }

    // Creates the model.
    CpModel model = new CpModel();

    class TaskType {
      IntVar start;
      IntVar end;
      IntervalVar interval;
    }
    Map<List<Integer>, TaskType> allTasks = new HashMap<>();
    Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size(); ++taskID) {
        Task task = job.get(taskID);
        String suffix = "_" + jobID + "_" + taskID;

        TaskType taskType = new TaskType();
        taskType.start = model.newIntVar(0, horizon, "start" + suffix);
        taskType.end = model.newIntVar(0, horizon, "end" + suffix);
        taskType.interval = model.newIntervalVar(
            taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

        List<Integer> key = Arrays.asList(jobID, taskID);
        allTasks.put(key, taskType);
        machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
        machineToIntervals.get(task.machine).add(taskType.interval);
      }
    }

    // Create and add disjunctive constraints.
    for (int machine : allMachines) {
      List<IntervalVar> list = machineToIntervals.get(machine);
      model.addNoOverlap(list);
    }

    // Precedences inside a job.
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
        List<Integer> prevKey = Arrays.asList(jobID, taskID);
        List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
        model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
      }
    }

    // Makespan objective.
    IntVar objVar = model.newIntVar(0, horizon, "makespan");
    List<IntVar> ends = new ArrayList<>();
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      List<Integer> key = Arrays.asList(jobID, job.size() - 1);
      ends.add(allTasks.get(key).end);
    }
    model.addMaxEquality(objVar, ends);
    model.minimize(objVar);

    // Creates a solver and solves the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      class AssignedTask {
        int jobID;
        int taskID;
        int start;
        int duration;
        // Ctor
        AssignedTask(int jobID, int taskID, int start, int duration) {
          this.jobID = jobID;
          this.taskID = taskID;
          this.start = start;
          this.duration = duration;
        }
      }
      class SortTasks implements Comparator<AssignedTask> {
        @Override
        public int compare(AssignedTask a, AssignedTask b) {
          if (a.start != b.start) {
            return a.start - b.start;
          } else {
            return a.duration - b.duration;
          }
        }
      }
      System.out.println("Solution:");
      // Create one list of assigned tasks per machine.
      Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
      for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
        List<Task> job = allJobs.get(jobID);
        for (int taskID = 0; taskID < job.size(); ++taskID) {
          Task task = job.get(taskID);
          List<Integer> key = Arrays.asList(jobID, taskID);
          AssignedTask assignedTask = new AssignedTask(
              jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
          assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
          assignedJobs.get(task.machine).add(assignedTask);
        }
      }

      // Create per machine output lines.
      String output = "";
      for (int machine : allMachines) {
        // Sort by starting time.
        Collections.sort(assignedJobs.get(machine), new SortTasks());
        String solLineTasks = "Machine " + machine + ": ";
        String solLine = "           ";

        for (AssignedTask assignedTask : assignedJobs.get(machine)) {
          String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
          // Add spaces to output to align columns.
          solLineTasks += String.format("%-15s", name);

          String solTmp =
              "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
          // Add spaces to output to align columns.
          solLine += String.format("%-15s", solTmp);
        }
        output += solLineTasks + "%n";
        output += solLine + "%n";
      }
      System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
      System.out.printf(output);
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private MinimalJobshopSat() {}
}

#C

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class ScheduleRequestsSat
{
    private class AssignedTask : IComparable
    {
        public int jobID;
        public int taskID;
        public int start;
        public int duration;

        public AssignedTask(int jobID, int taskID, int start, int duration)
        {
            this.jobID = jobID;
            this.taskID = taskID;
            this.start = start;
            this.duration = duration;
        }

        public int CompareTo(object obj)
        {
            if (obj == null)
                return 1;

            AssignedTask otherTask = obj as AssignedTask;
            if (otherTask != null)
            {
                if (this.start != otherTask.start)
                    return this.start.CompareTo(otherTask.start);
                else
                    return this.duration.CompareTo(otherTask.duration);
            }
            else
                throw new ArgumentException("Object is not a Temperature");
        }
    }

    public static void Main(String[] args)
    {
        var allJobs =
            new[] {
                new[] {
                    // job0
                    new { machine = 0, duration = 3 }, // task0
                    new { machine = 1, duration = 2 }, // task1
                    new { machine = 2, duration = 2 }, // task2
                }
                    .ToList(),
                new[] {
                    // job1
                    new { machine = 0, duration = 2 }, // task0
                    new { machine = 2, duration = 1 }, // task1
                    new { machine = 1, duration = 4 }, // task2
                }
                    .ToList(),
                new[] {
                    // job2
                    new { machine = 1, duration = 4 }, // task0
                    new { machine = 2, duration = 3 }, // task1
                }
                    .ToList(),
            }
                .ToList();

        int numMachines = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                numMachines = Math.Max(numMachines, 1 + task.machine);
            }
        }
        int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

        // Computes horizon dynamically as the sum of all durations.
        int horizon = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                horizon += task.duration;
            }
        }

        // Creates the model.
        CpModel model = new CpModel();

        Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
            new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
        Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count(); ++taskID)
            {
                var task = job[taskID];
                String suffix = $"_{jobID}_{taskID}";
                IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
                IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
                IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
                var key = Tuple.Create(jobID, taskID);
                allTasks[key] = Tuple.Create(start, end, interval);
                if (!machineToIntervals.ContainsKey(task.machine))
                {
                    machineToIntervals.Add(task.machine, new List<IntervalVar>());
                }
                machineToIntervals[task.machine].Add(interval);
            }
        }

        // Create and add disjunctive constraints.
        foreach (int machine in allMachines)
        {
            model.AddNoOverlap(machineToIntervals[machine]);
        }

        // Precedences inside a job.
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
            {
                var key = Tuple.Create(jobID, taskID);
                var nextKey = Tuple.Create(jobID, taskID + 1);
                model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
            }
        }

        // Makespan objective.
        IntVar objVar = model.NewIntVar(0, horizon, "makespan");

        List<IntVar> ends = new List<IntVar>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            var key = Tuple.Create(jobID, job.Count() - 1);
            ends.Add(allTasks[key].Item2);
        }
        model.AddMaxEquality(objVar, ends);
        model.Minimize(objVar);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("Solution:");

            Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
            for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
            {
                var job = allJobs[jobID];
                for (int taskID = 0; taskID < job.Count(); ++taskID)
                {
                    var task = job[taskID];
                    var key = Tuple.Create(jobID, taskID);
                    int start = (int)solver.Value(allTasks[key].Item1);
                    if (!assignedJobs.ContainsKey(task.machine))
                    {
                        assignedJobs.Add(task.machine, new List<AssignedTask>());
                    }
                    assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
                }
            }

            // Create per machine output lines.
            String output = "";
            foreach (int machine in allMachines)
            {
                // Sort by starting time.
                assignedJobs[machine].Sort();
                String solLineTasks = $"Machine {machine}: ";
                String solLine = "           ";

                foreach (var assignedTask in assignedJobs[machine])
                {
                    String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
                    // Add spaces to output to align columns.
                    solLineTasks += $"{name,-15}";

                    String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
                    // Add spaces to output to align columns.
                    solLine += $"{solTmp,-15}";
                }
                output += solLineTasks + "\n";
                output += solLine + "\n";
            }
            // Finally print the solution found.
            Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
            Console.WriteLine($"\n{output}");
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}