אחת הבעיות הנפוצות בתזמון היא חנות המשרות, שבה יש כמה משרות שמעובד במספר מכונות.
כל משימה מורכבת מרצף של משימות שחובה לבצע
וכל משימה צריכה להיות מעובדת במכונה ספציפית.
לדוגמה, העבודה יכולה להיות ייצור של פריט צרכן יחיד, כמו
רכב.
הבעיה היא לתזמן את המשימות במכונות כדי לצמצם
length
בלוח הזמנים – הזמן שנדרש להשלמת כל המשימות.
יש מספר מגבלות לבעיה עם חנות המשרות:
- אי אפשר להתחיל משימות במשימה עד שהמשימה הקודמת הושלמו.
- מכונה יכולה לעבוד רק במשימה אחת בכל פעם.
- משימה שהחלה, צריכה להתחיל לפעול עד לסיומה.
בעיה לדוגמה
דוגמה פשוטה לבעיה בחנות עבודה שבה לכל משימה מצורפת תווית בצמד מספרים (m, p) כש-m הוא מספר המכונה שהמשימה בוצעה צריך להיות מעובד ב-, ו-p הוא זמן העיבוד של המשימה – כמה זמן נדרש. (מספור המשימות והמכונות מתחיל ב-0).
- משימה 0 = [(0, 3), (1, 2), (2, 2)]
- משימה 1 = [(0, 2), (2, 1), (1, 4)]
- משימה 2 = [(1, 4), (2, 3)]
בדוגמה, למשימה 0 יש שלוש משימות. הערך הראשון, (0, 3), צריך לעבור עיבוד במכונה 0, בשלוש יחידות זמן. את השנייה, (1, 2), צריכה לעבור עיבוד ב- מכונה אחת בשתי יחידות זמן וכן הלאה. בסך הכול, יש שמונה משימות.
פתרון לבעיה
פתרון לבעיה של חנות המשרות הוא הקצאה של שעת התחלה לכל אירוע שעונה על המגבלות שמצוינות למעלה. התרשים הבא מציג פתרון אפשרי אחד לבעיה:
אתם יכולים לבדוק שהמשימות בכל משימה מתוזמנות לפי זמנים שאין ביניהם חפיפה. במרווחים, לפי הסדר שנקבע על ידי הבעיה.
האורך של הפתרון הזה הוא 12 – הפעם הראשונה שבה כל שלוש המשימות שהושלמו. עם זאת, כמו שאפשר לראות בהמשך, זה לא הפתרון האופטימלי את הבעיה.
המשתנים והמגבלות לבעיה
בקטע הזה נסביר איך להגדיר את המשתנים והאילוצים
.
קודם כל, task(i, j)
יציין את משימת jth ברצף של משימה i. עבור
לדוגמה, task(0, 2)
מציין את המשימה השנייה של משימה 0, שתואמת
הצמד (1, 2)
בתיאור הבעיה.
לאחר מכן מגדירים את ti, j כשעת ההתחלה של task(i, j)
.
ti, j הם המשתנים בבעיה של חנות המשרות. איתור
כוללת קביעת ערכים עבור המשתנים האלה שעומדים
לדרישה.
יש שני סוגי אילוצים בבעיה של חנות המשרות:
- מגבלות קדימות – הן נובעות מהתנאי שלכל
שתי משימות עוקבות באותה משימה, צריך להשלים את הראשונה לפני
לשנייה. לדוגמה,
task(0, 2)
ו-task(0, 3)
הם משימות ברצף למשימה 0. מכיוון שזמן העיבוד שלtask(0, 2)
הוא 2, שעת ההתחלה עבורtask(0, 3)
חייב להיות לפחות 2 יחידות זמן אחרי שעת ההתחלה של משימה 2. (אולי משימה 2 היא צביעת דלת, וייקח שעתיים עד שהצבע dry.) כתוצאה מכך, תקבלו את האילוץ הבא:t
0, 2 + 2 <=t
0, 3
- ללא מגבלות חפיפה – הן נובעות מההגבלה של
המכונה4 לא יכולה לעבוד על שתי משימות בו-זמנית.
לדוגמה, גם משימה(0, 2) וגם משימה(2, 1) מעובדות במכונה 1.
מכיוון שזמני העיבוד שלהם הם 2 ו-4, בהתאמה, אחד מהתנאים הבאים
האילוצים צריכים להתקיים:
t
0, 2 + 2 <=t
2, 1 (אם מתוזמןtask(0, 2)
לפניtask(2, 1)
) אוt
2, 1 + 4 <=t
0, 2 (אם מתוזמןtask(2, 1)
לפניtask(0, 2)
).
מטרת הבעיה
מטרת הבעיה של חנות המשרות היא לצמצם את המהפכנית: משך הזמן שבין שעת ההתחלה המוקדמת ביותר של המשימות לבין שעת הסיום האחרונה.
פתרון של התוכנית
בקטעים הבאים מתוארים המרכיבים העיקריים של תוכנית שפותרת את בעיה בחנות.
ייבוא הספריות
הקוד הבא מייבא את הספרייה הנדרשת.
Python
import collections from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <algorithm> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
Java
import static java.lang.Math.max; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.IntervalVar; import com.google.ortools.sat.LinearExpr; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.stream.IntStream;
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat;
הגדרת הנתונים
בשלב הבא התוכנה מגדירה את הנתונים לבעיה.
Python
jobs_data = [ # task = (machine_id, processing_time). [(0, 3), (1, 2), (2, 2)], # Job0 [(0, 2), (2, 1), (1, 4)], # Job1 [(1, 4), (2, 3)], # Job2 ] machines_count = 1 + max(task[0] for job in jobs_data for task in job) all_machines = range(machines_count) # Computes horizon dynamically as the sum of all durations. horizon = sum(task[1] for job in jobs_data for task in job)
C++
using Task = std::tuple<int64_t, int64_t>; // (machine_id, processing_time) using Job = std::vector<Task>; std::vector<Job> jobs_data = { {{0, 3}, {1, 2}, {2, 2}}, // Job_0: Task_0 Task_1 Task_2 {{0, 2}, {2, 1}, {1, 4}}, // Job_1: Task_0 Task_1 Task_2 {{1, 4}, {2, 3}}, // Job_2: Task_0 Task_1 }; int64_t num_machines = 0; for (const auto& job : jobs_data) { for (const auto& [machine, _] : job) { num_machines = std::max(num_machines, 1 + machine); } } std::vector<int> all_machines(num_machines); std::iota(all_machines.begin(), all_machines.end(), 0); // Computes horizon dynamically as the sum of all durations. int64_t horizon = 0; for (const auto& job : jobs_data) { for (const auto& [_, time] : job) { horizon += time; } }
Java
class Task { int machine; int duration; Task(int machine, int duration) { this.machine = machine; this.duration = duration; } } final List<List<Task>> allJobs = Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0 Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1 Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2 ); int numMachines = 1; for (List<Task> job : allJobs) { for (Task task : job) { numMachines = max(numMachines, 1 + task.machine); } } final int[] allMachines = IntStream.range(0, numMachines).toArray(); // Computes horizon dynamically as the sum of all durations. int horizon = 0; for (List<Task> job : allJobs) { for (Task task : job) { horizon += task.duration; } }
C#
var allJobs = new[] { new[] { // job0 new { machine = 0, duration = 3 }, // task0 new { machine = 1, duration = 2 }, // task1 new { machine = 2, duration = 2 }, // task2 } .ToList(), new[] { // job1 new { machine = 0, duration = 2 }, // task0 new { machine = 2, duration = 1 }, // task1 new { machine = 1, duration = 4 }, // task2 } .ToList(), new[] { // job2 new { machine = 1, duration = 4 }, // task0 new { machine = 2, duration = 3 }, // task1 } .ToList(), } .ToList(); int numMachines = 0; foreach (var job in allJobs) { foreach (var task in job) { numMachines = Math.Max(numMachines, 1 + task.machine); } } int[] allMachines = Enumerable.Range(0, numMachines).ToArray(); // Computes horizon dynamically as the sum of all durations. int horizon = 0; foreach (var job in allJobs) { foreach (var task in job) { horizon += task.duration; } }
להצהיר על המודל
הקוד הבא מציין את המודל לבעיה.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
הגדרת המשתנים
הקוד הבא מגדיר את המשתנים בבעיה.
Python
# Named tuple to store information about created variables. task_type = collections.namedtuple("task_type", "start end interval") # Named tuple to manipulate solution information. assigned_task_type = collections.namedtuple( "assigned_task_type", "start job index duration" ) # Creates job intervals and add to the corresponding machine lists. all_tasks = {} machine_to_intervals = collections.defaultdict(list) for job_id, job in enumerate(jobs_data): for task_id, task in enumerate(job): machine, duration = task suffix = f"_{job_id}_{task_id}" start_var = model.new_int_var(0, horizon, "start" + suffix) end_var = model.new_int_var(0, horizon, "end" + suffix) interval_var = model.new_interval_var( start_var, duration, end_var, "interval" + suffix ) all_tasks[job_id, task_id] = task_type( start=start_var, end=end_var, interval=interval_var ) machine_to_intervals[machine].append(interval_var)
C++
struct TaskType { IntVar start; IntVar end; IntervalVar interval; }; using TaskID = std::tuple<int, int>; // (job_id, task_id) std::map<TaskID, TaskType> all_tasks; std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size(); ++task_id) { const auto [machine, duration] = job[task_id]; std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id); IntVar start = cp_model.NewIntVar({0, horizon}) .WithName(std::string("start") + suffix); IntVar end = cp_model.NewIntVar({0, horizon}) .WithName(std::string("end") + suffix); IntervalVar interval = cp_model.NewIntervalVar(start, duration, end) .WithName(std::string("interval") + suffix); TaskID key = std::make_tuple(job_id, task_id); all_tasks.emplace(key, TaskType{/*.start=*/start, /*.end=*/end, /*.interval=*/interval}); machine_to_intervals[machine].push_back(interval); } }
Java
class TaskType { IntVar start; IntVar end; IntervalVar interval; } Map<List<Integer>, TaskType> allTasks = new HashMap<>(); Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size(); ++taskID) { Task task = job.get(taskID); String suffix = "_" + jobID + "_" + taskID; TaskType taskType = new TaskType(); taskType.start = model.newIntVar(0, horizon, "start" + suffix); taskType.end = model.newIntVar(0, horizon, "end" + suffix); taskType.interval = model.newIntervalVar( taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix); List<Integer> key = Arrays.asList(jobID, taskID); allTasks.put(key, taskType); machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>()); machineToIntervals.get(task.machine).add(taskType.interval); } }
C#
Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks = new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration) Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count(); ++taskID) { var task = job[taskID]; String suffix = $"_{jobID}_{taskID}"; IntVar start = model.NewIntVar(0, horizon, "start" + suffix); IntVar end = model.NewIntVar(0, horizon, "end" + suffix); IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix); var key = Tuple.Create(jobID, taskID); allTasks[key] = Tuple.Create(start, end, interval); if (!machineToIntervals.ContainsKey(task.machine)) { machineToIntervals.Add(task.machine, new List<IntervalVar>()); } machineToIntervals[task.machine].Add(interval); } }
לכל משימה ומשימה, התוכנה משתמשת
השיטה NewIntVar/new_int_var/newIntVar
כדי ליצור את המשתנים:
start_var
: שעת ההתחלה של המשימה.end_var
: שעת הסיום של המשימה.
הגבול העליון של start_var
ושל end_var
הוא horizon
, סכום
זמני עיבוד לכל המשימות בכל המשימות.
horizon
גדול מספיק כדי להשלים את כל המשימות מהסיבה הבאה:
אם תתזמנו את המשימות במרווחי זמן לא חופפים (השיטה
הפתרון), משך הזמן הכולל של התזמון הוא בדיוק horizon
. למשל,
משך הזמן של הפתרון האופטימלי לא יכול להיות ארוך מ-horizon
.
בשלב הבא, התוכנה משתמשת בNewIntervalVar/new_interval_var/newIntervalVar
שיטה ליצירת משתנה מרווח — שהערך שלו הוא זמן משתנה
של המשימה. מקורות הקלט לשיטה הזו הם:
- שעת ההתחלה של המשימה.
- משך מרווח הזמן של המשימה.
- מועד הסיום של המשימה.
- השם של משתנה המרווח.
בכל פתרון, end_var
פחות start_var
חייב להיות שווה ל-duration
.
הגדרת המגבלות
הקוד הבא מגדיר את המגבלות של הבעיה.
Python
# Create and add disjunctive constraints. for machine in all_machines: model.add_no_overlap(machine_to_intervals[machine]) # Precedences inside a job. for job_id, job in enumerate(jobs_data): for task_id in range(len(job) - 1): model.add( all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end )
C++
// Create and add disjunctive constraints. for (const auto machine : all_machines) { cp_model.AddNoOverlap(machine_to_intervals[machine]); } // Precedences inside a job. for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size() - 1; ++task_id) { TaskID key = std::make_tuple(job_id, task_id); TaskID next_key = std::make_tuple(job_id, task_id + 1); cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end); } }
Java
// Create and add disjunctive constraints. for (int machine : allMachines) { List<IntervalVar> list = machineToIntervals.get(machine); model.addNoOverlap(list); } // Precedences inside a job. for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size() - 1; ++taskID) { List<Integer> prevKey = Arrays.asList(jobID, taskID); List<Integer> nextKey = Arrays.asList(jobID, taskID + 1); model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end); } }
C#
// Create and add disjunctive constraints. foreach (int machine in allMachines) { model.AddNoOverlap(machineToIntervals[machine]); } // Precedences inside a job. for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count() - 1; ++taskID) { var key = Tuple.Create(jobID, taskID); var nextKey = Tuple.Create(jobID, taskID + 1); model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2); } }
התוכנה משתמשת בשיטת ה-AddNoOverlap/add_no_overlap/addNoOverlap
של המודל.
ליצור את המגבלות ללא חפיפה, שמונעות משימות
לאותה מכונה כדי למנוע חפיפה בזמן מסוים.
בשלב הבא, התוכנה מוסיפה את מגבלות הקדימות, שמונעות משימות עוקבות עבור אותה משימה מפני חפיפה בזמן. לכל משימה לכל משימה במשימה, מתווסף מגבלה ליניארית כדי לציין פעם של משימה שתתרחש לפני שעת ההתחלה של המשימה הבאה במשימה.
מגדירים את המטרה
הקוד הבא מגדיר את המטרה בבעיה.
Python
# Makespan objective. obj_var = model.new_int_var(0, horizon, "makespan") model.add_max_equality( obj_var, [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)], ) model.minimize(obj_var)
C++
// Makespan objective. IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan"); std::vector<IntVar> ends; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; TaskID key = std::make_tuple(job_id, job.size() - 1); ends.push_back(all_tasks[key].end); } cp_model.AddMaxEquality(obj_var, ends); cp_model.Minimize(obj_var);
Java
// Makespan objective. IntVar objVar = model.newIntVar(0, horizon, "makespan"); List<IntVar> ends = new ArrayList<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); List<Integer> key = Arrays.asList(jobID, job.size() - 1); ends.add(allTasks.get(key).end); } model.addMaxEquality(objVar, ends); model.minimize(objVar);
C#
// Makespan objective. IntVar objVar = model.NewIntVar(0, horizon, "makespan"); List<IntVar> ends = new List<IntVar>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; var key = Tuple.Create(jobID, job.Count() - 1); ends.Add(allTasks[key].Item2); } model.AddMaxEquality(objVar, ends); model.Minimize(objVar);
הקוד הזה יוצר משתנה אובייקטיבי ומגביל אותו כך שיהיה סוף כל המשימות.
הפעלת הפותר
הקוד הבא מפעיל את הפותר.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
הצגת התוצאות
הקוד הבא מציג את התוצאות, כולל לוח הזמנים והמשימה האופטימליים במרווחים.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print("Solution:") # Create one list of assigned tasks per machine. assigned_jobs = collections.defaultdict(list) for job_id, job in enumerate(jobs_data): for task_id, task in enumerate(job): machine = task[0] assigned_jobs[machine].append( assigned_task_type( start=solver.value(all_tasks[job_id, task_id].start), job=job_id, index=task_id, duration=task[1], ) ) # Create per machine output lines. output = "" for machine in all_machines: # Sort by starting time. assigned_jobs[machine].sort() sol_line_tasks = "Machine " + str(machine) + ": " sol_line = " " for assigned_task in assigned_jobs[machine]: name = f"job_{assigned_task.job}_task_{assigned_task.index}" # add spaces to output to align columns. sol_line_tasks += f"{name:15}" start = assigned_task.start duration = assigned_task.duration sol_tmp = f"[{start},{start + duration}]" # add spaces to output to align columns. sol_line += f"{sol_tmp:15}" sol_line += "\n" sol_line_tasks += "\n" output += sol_line_tasks output += sol_line # Finally print the solution found. print(f"Optimal Schedule Length: {solver.objective_value}") print(output) else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { LOG(INFO) << "Solution:"; // create one list of assigned tasks per machine. struct AssignedTaskType { int job_id; int task_id; int64_t start; int64_t duration; bool operator<(const AssignedTaskType& rhs) const { return std::tie(this->start, this->duration) < std::tie(rhs.start, rhs.duration); } }; std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size(); ++task_id) { const auto [machine, duration] = job[task_id]; TaskID key = std::make_tuple(job_id, task_id); int64_t start = SolutionIntegerValue(response, all_tasks[key].start); assigned_jobs[machine].push_back( AssignedTaskType{/*.job_id=*/job_id, /*.task_id=*/task_id, /*.start=*/start, /*.duration=*/duration}); } } // Create per machine output lines. std::string output = ""; for (const auto machine : all_machines) { // Sort by starting time. std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end()); std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": "; std::string sol_line = " "; for (const auto& assigned_task : assigned_jobs[machine]) { std::string name = absl::StrFormat( "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id); // Add spaces to output to align columns. sol_line_tasks += absl::StrFormat("%-15s", name); int64_t start = assigned_task.start; int64_t duration = assigned_task.duration; std::string sol_tmp = absl::StrFormat("[%i,%i]", start, start + duration); // Add spaces to output to align columns. sol_line += absl::StrFormat("%-15s", sol_tmp); } output += sol_line_tasks + "\n"; output += sol_line + "\n"; } // Finally print the solution found. LOG(INFO) << "Optimal Schedule Length: " << response.objective_value(); LOG(INFO) << "\n" << output; } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { class AssignedTask { int jobID; int taskID; int start; int duration; // Ctor AssignedTask(int jobID, int taskID, int start, int duration) { this.jobID = jobID; this.taskID = taskID; this.start = start; this.duration = duration; } } class SortTasks implements Comparator<AssignedTask> { @Override public int compare(AssignedTask a, AssignedTask b) { if (a.start != b.start) { return a.start - b.start; } else { return a.duration - b.duration; } } } System.out.println("Solution:"); // Create one list of assigned tasks per machine. Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size(); ++taskID) { Task task = job.get(taskID); List<Integer> key = Arrays.asList(jobID, taskID); AssignedTask assignedTask = new AssignedTask( jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration); assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>()); assignedJobs.get(task.machine).add(assignedTask); } } // Create per machine output lines. String output = ""; for (int machine : allMachines) { // Sort by starting time. Collections.sort(assignedJobs.get(machine), new SortTasks()); String solLineTasks = "Machine " + machine + ": "; String solLine = " "; for (AssignedTask assignedTask : assignedJobs.get(machine)) { String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID; // Add spaces to output to align columns. solLineTasks += String.format("%-15s", name); String solTmp = "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]"; // Add spaces to output to align columns. solLine += String.format("%-15s", solTmp); } output += solLineTasks + "%n"; output += solLine + "%n"; } System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue()); System.out.printf(output); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count(); ++taskID) { var task = job[taskID]; var key = Tuple.Create(jobID, taskID); int start = (int)solver.Value(allTasks[key].Item1); if (!assignedJobs.ContainsKey(task.machine)) { assignedJobs.Add(task.machine, new List<AssignedTask>()); } assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration)); } } // Create per machine output lines. String output = ""; foreach (int machine in allMachines) { // Sort by starting time. assignedJobs[machine].Sort(); String solLineTasks = $"Machine {machine}: "; String solLine = " "; foreach (var assignedTask in assignedJobs[machine]) { String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}"; // Add spaces to output to align columns. solLineTasks += $"{name,-15}"; String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]"; // Add spaces to output to align columns. solLine += $"{solTmp,-15}"; } output += solLineTasks + "\n"; output += solLine + "\n"; } // Finally print the solution found. Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}"); Console.WriteLine($"\n{output}"); } else { Console.WriteLine("No solution found."); }
לוח הזמנים האופטימלי מוצג כאן:
Optimal Schedule Length: 11
Machine 0: job_0_0 job_1_0
[0,3] [3,5]
Machine 1: job_2_0 job_0_1 job_1_2
[0,4] [4,6] [7,11]
Machine 2: job_1_1 job_0_2 job_2_1
[5,6] [6,8] [8,11]
קוראים חדי עין שבוחנים את מחשב 1 עשויים לתהות למה משימה_1_2 נקבעה שעה 7 במקום שעה 6. שניהם פתרונות חוקיים, אבל חשוב לזכור: המטרה היא לצמצם את תופעת המכונה. העברת המשימה_1_2 קודם לא תצמצם את ההיקף , כך ששני הפתרונות שווים מבחינת הפותר.
כל התוכנית
לבסוף, ריכזנו כאן את כל התוכנית לפתרון הבעיה של חנות המשרות.
Python
"""Minimal jobshop example.""" import collections from ortools.sat.python import cp_model def main() -> None: """Minimal jobshop problem.""" # Data. jobs_data = [ # task = (machine_id, processing_time). [(0, 3), (1, 2), (2, 2)], # Job0 [(0, 2), (2, 1), (1, 4)], # Job1 [(1, 4), (2, 3)], # Job2 ] machines_count = 1 + max(task[0] for job in jobs_data for task in job) all_machines = range(machines_count) # Computes horizon dynamically as the sum of all durations. horizon = sum(task[1] for job in jobs_data for task in job) # Create the model. model = cp_model.CpModel() # Named tuple to store information about created variables. task_type = collections.namedtuple("task_type", "start end interval") # Named tuple to manipulate solution information. assigned_task_type = collections.namedtuple( "assigned_task_type", "start job index duration" ) # Creates job intervals and add to the corresponding machine lists. all_tasks = {} machine_to_intervals = collections.defaultdict(list) for job_id, job in enumerate(jobs_data): for task_id, task in enumerate(job): machine, duration = task suffix = f"_{job_id}_{task_id}" start_var = model.new_int_var(0, horizon, "start" + suffix) end_var = model.new_int_var(0, horizon, "end" + suffix) interval_var = model.new_interval_var( start_var, duration, end_var, "interval" + suffix ) all_tasks[job_id, task_id] = task_type( start=start_var, end=end_var, interval=interval_var ) machine_to_intervals[machine].append(interval_var) # Create and add disjunctive constraints. for machine in all_machines: model.add_no_overlap(machine_to_intervals[machine]) # Precedences inside a job. for job_id, job in enumerate(jobs_data): for task_id in range(len(job) - 1): model.add( all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end ) # Makespan objective. obj_var = model.new_int_var(0, horizon, "makespan") model.add_max_equality( obj_var, [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)], ) model.minimize(obj_var) # Creates the solver and solve. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print("Solution:") # Create one list of assigned tasks per machine. assigned_jobs = collections.defaultdict(list) for job_id, job in enumerate(jobs_data): for task_id, task in enumerate(job): machine = task[0] assigned_jobs[machine].append( assigned_task_type( start=solver.value(all_tasks[job_id, task_id].start), job=job_id, index=task_id, duration=task[1], ) ) # Create per machine output lines. output = "" for machine in all_machines: # Sort by starting time. assigned_jobs[machine].sort() sol_line_tasks = "Machine " + str(machine) + ": " sol_line = " " for assigned_task in assigned_jobs[machine]: name = f"job_{assigned_task.job}_task_{assigned_task.index}" # add spaces to output to align columns. sol_line_tasks += f"{name:15}" start = assigned_task.start duration = assigned_task.duration sol_tmp = f"[{start},{start + duration}]" # add spaces to output to align columns. sol_line += f"{sol_tmp:15}" sol_line += "\n" sol_line_tasks += "\n" output += sol_line_tasks output += sol_line # Finally print the solution found. print(f"Optimal Schedule Length: {solver.objective_value}") print(output) else: print("No solution found.") # Statistics. print("\nStatistics") print(f" - conflicts: {solver.num_conflicts}") print(f" - branches : {solver.num_branches}") print(f" - wall time: {solver.wall_time}s") if __name__ == "__main__": main()
C++
// Nurse scheduling problem with shift requests. #include <stdlib.h> #include <algorithm> #include <cstdint> #include <map> #include <numeric> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void MinimalJobshopSat() { using Task = std::tuple<int64_t, int64_t>; // (machine_id, processing_time) using Job = std::vector<Task>; std::vector<Job> jobs_data = { {{0, 3}, {1, 2}, {2, 2}}, // Job_0: Task_0 Task_1 Task_2 {{0, 2}, {2, 1}, {1, 4}}, // Job_1: Task_0 Task_1 Task_2 {{1, 4}, {2, 3}}, // Job_2: Task_0 Task_1 }; int64_t num_machines = 0; for (const auto& job : jobs_data) { for (const auto& [machine, _] : job) { num_machines = std::max(num_machines, 1 + machine); } } std::vector<int> all_machines(num_machines); std::iota(all_machines.begin(), all_machines.end(), 0); // Computes horizon dynamically as the sum of all durations. int64_t horizon = 0; for (const auto& job : jobs_data) { for (const auto& [_, time] : job) { horizon += time; } } // Creates the model. CpModelBuilder cp_model; struct TaskType { IntVar start; IntVar end; IntervalVar interval; }; using TaskID = std::tuple<int, int>; // (job_id, task_id) std::map<TaskID, TaskType> all_tasks; std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size(); ++task_id) { const auto [machine, duration] = job[task_id]; std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id); IntVar start = cp_model.NewIntVar({0, horizon}) .WithName(std::string("start") + suffix); IntVar end = cp_model.NewIntVar({0, horizon}) .WithName(std::string("end") + suffix); IntervalVar interval = cp_model.NewIntervalVar(start, duration, end) .WithName(std::string("interval") + suffix); TaskID key = std::make_tuple(job_id, task_id); all_tasks.emplace(key, TaskType{/*.start=*/start, /*.end=*/end, /*.interval=*/interval}); machine_to_intervals[machine].push_back(interval); } } // Create and add disjunctive constraints. for (const auto machine : all_machines) { cp_model.AddNoOverlap(machine_to_intervals[machine]); } // Precedences inside a job. for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size() - 1; ++task_id) { TaskID key = std::make_tuple(job_id, task_id); TaskID next_key = std::make_tuple(job_id, task_id + 1); cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end); } } // Makespan objective. IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan"); std::vector<IntVar> ends; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; TaskID key = std::make_tuple(job_id, job.size() - 1); ends.push_back(all_tasks[key].end); } cp_model.AddMaxEquality(obj_var, ends); cp_model.Minimize(obj_var); const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { LOG(INFO) << "Solution:"; // create one list of assigned tasks per machine. struct AssignedTaskType { int job_id; int task_id; int64_t start; int64_t duration; bool operator<(const AssignedTaskType& rhs) const { return std::tie(this->start, this->duration) < std::tie(rhs.start, rhs.duration); } }; std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs; for (int job_id = 0; job_id < jobs_data.size(); ++job_id) { const auto& job = jobs_data[job_id]; for (int task_id = 0; task_id < job.size(); ++task_id) { const auto [machine, duration] = job[task_id]; TaskID key = std::make_tuple(job_id, task_id); int64_t start = SolutionIntegerValue(response, all_tasks[key].start); assigned_jobs[machine].push_back( AssignedTaskType{/*.job_id=*/job_id, /*.task_id=*/task_id, /*.start=*/start, /*.duration=*/duration}); } } // Create per machine output lines. std::string output = ""; for (const auto machine : all_machines) { // Sort by starting time. std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end()); std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": "; std::string sol_line = " "; for (const auto& assigned_task : assigned_jobs[machine]) { std::string name = absl::StrFormat( "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id); // Add spaces to output to align columns. sol_line_tasks += absl::StrFormat("%-15s", name); int64_t start = assigned_task.start; int64_t duration = assigned_task.duration; std::string sol_tmp = absl::StrFormat("[%i,%i]", start, start + duration); // Add spaces to output to align columns. sol_line += absl::StrFormat("%-15s", sol_tmp); } output += sol_line_tasks + "\n"; output += sol_line + "\n"; } // Finally print the solution found. LOG(INFO) << "Optimal Schedule Length: " << response.objective_value(); LOG(INFO) << "\n" << output; } else { LOG(INFO) << "No solution found."; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::MinimalJobshopSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import static java.lang.Math.max; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.IntervalVar; import com.google.ortools.sat.LinearExpr; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.stream.IntStream; /** Minimal Jobshop problem. */ public class MinimalJobshopSat { public static void main(String[] args) { Loader.loadNativeLibraries(); class Task { int machine; int duration; Task(int machine, int duration) { this.machine = machine; this.duration = duration; } } final List<List<Task>> allJobs = Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0 Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1 Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2 ); int numMachines = 1; for (List<Task> job : allJobs) { for (Task task : job) { numMachines = max(numMachines, 1 + task.machine); } } final int[] allMachines = IntStream.range(0, numMachines).toArray(); // Computes horizon dynamically as the sum of all durations. int horizon = 0; for (List<Task> job : allJobs) { for (Task task : job) { horizon += task.duration; } } // Creates the model. CpModel model = new CpModel(); class TaskType { IntVar start; IntVar end; IntervalVar interval; } Map<List<Integer>, TaskType> allTasks = new HashMap<>(); Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size(); ++taskID) { Task task = job.get(taskID); String suffix = "_" + jobID + "_" + taskID; TaskType taskType = new TaskType(); taskType.start = model.newIntVar(0, horizon, "start" + suffix); taskType.end = model.newIntVar(0, horizon, "end" + suffix); taskType.interval = model.newIntervalVar( taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix); List<Integer> key = Arrays.asList(jobID, taskID); allTasks.put(key, taskType); machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>()); machineToIntervals.get(task.machine).add(taskType.interval); } } // Create and add disjunctive constraints. for (int machine : allMachines) { List<IntervalVar> list = machineToIntervals.get(machine); model.addNoOverlap(list); } // Precedences inside a job. for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size() - 1; ++taskID) { List<Integer> prevKey = Arrays.asList(jobID, taskID); List<Integer> nextKey = Arrays.asList(jobID, taskID + 1); model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end); } } // Makespan objective. IntVar objVar = model.newIntVar(0, horizon, "makespan"); List<IntVar> ends = new ArrayList<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); List<Integer> key = Arrays.asList(jobID, job.size() - 1); ends.add(allTasks.get(key).end); } model.addMaxEquality(objVar, ends); model.minimize(objVar); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { class AssignedTask { int jobID; int taskID; int start; int duration; // Ctor AssignedTask(int jobID, int taskID, int start, int duration) { this.jobID = jobID; this.taskID = taskID; this.start = start; this.duration = duration; } } class SortTasks implements Comparator<AssignedTask> { @Override public int compare(AssignedTask a, AssignedTask b) { if (a.start != b.start) { return a.start - b.start; } else { return a.duration - b.duration; } } } System.out.println("Solution:"); // Create one list of assigned tasks per machine. Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>(); for (int jobID = 0; jobID < allJobs.size(); ++jobID) { List<Task> job = allJobs.get(jobID); for (int taskID = 0; taskID < job.size(); ++taskID) { Task task = job.get(taskID); List<Integer> key = Arrays.asList(jobID, taskID); AssignedTask assignedTask = new AssignedTask( jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration); assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>()); assignedJobs.get(task.machine).add(assignedTask); } } // Create per machine output lines. String output = ""; for (int machine : allMachines) { // Sort by starting time. Collections.sort(assignedJobs.get(machine), new SortTasks()); String solLineTasks = "Machine " + machine + ": "; String solLine = " "; for (AssignedTask assignedTask : assignedJobs.get(machine)) { String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID; // Add spaces to output to align columns. solLineTasks += String.format("%-15s", name); String solTmp = "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]"; // Add spaces to output to align columns. solLine += String.format("%-15s", solTmp); } output += solLineTasks + "%n"; output += solLine + "%n"; } System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue()); System.out.printf(output); } else { System.out.println("No solution found."); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private MinimalJobshopSat() {} }
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat; public class ScheduleRequestsSat { private class AssignedTask : IComparable { public int jobID; public int taskID; public int start; public int duration; public AssignedTask(int jobID, int taskID, int start, int duration) { this.jobID = jobID; this.taskID = taskID; this.start = start; this.duration = duration; } public int CompareTo(object obj) { if (obj == null) return 1; AssignedTask otherTask = obj as AssignedTask; if (otherTask != null) { if (this.start != otherTask.start) return this.start.CompareTo(otherTask.start); else return this.duration.CompareTo(otherTask.duration); } else throw new ArgumentException("Object is not a Temperature"); } } public static void Main(String[] args) { var allJobs = new[] { new[] { // job0 new { machine = 0, duration = 3 }, // task0 new { machine = 1, duration = 2 }, // task1 new { machine = 2, duration = 2 }, // task2 } .ToList(), new[] { // job1 new { machine = 0, duration = 2 }, // task0 new { machine = 2, duration = 1 }, // task1 new { machine = 1, duration = 4 }, // task2 } .ToList(), new[] { // job2 new { machine = 1, duration = 4 }, // task0 new { machine = 2, duration = 3 }, // task1 } .ToList(), } .ToList(); int numMachines = 0; foreach (var job in allJobs) { foreach (var task in job) { numMachines = Math.Max(numMachines, 1 + task.machine); } } int[] allMachines = Enumerable.Range(0, numMachines).ToArray(); // Computes horizon dynamically as the sum of all durations. int horizon = 0; foreach (var job in allJobs) { foreach (var task in job) { horizon += task.duration; } } // Creates the model. CpModel model = new CpModel(); Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks = new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration) Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count(); ++taskID) { var task = job[taskID]; String suffix = $"_{jobID}_{taskID}"; IntVar start = model.NewIntVar(0, horizon, "start" + suffix); IntVar end = model.NewIntVar(0, horizon, "end" + suffix); IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix); var key = Tuple.Create(jobID, taskID); allTasks[key] = Tuple.Create(start, end, interval); if (!machineToIntervals.ContainsKey(task.machine)) { machineToIntervals.Add(task.machine, new List<IntervalVar>()); } machineToIntervals[task.machine].Add(interval); } } // Create and add disjunctive constraints. foreach (int machine in allMachines) { model.AddNoOverlap(machineToIntervals[machine]); } // Precedences inside a job. for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count() - 1; ++taskID) { var key = Tuple.Create(jobID, taskID); var nextKey = Tuple.Create(jobID, taskID + 1); model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2); } } // Makespan objective. IntVar objVar = model.NewIntVar(0, horizon, "makespan"); List<IntVar> ends = new List<IntVar>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; var key = Tuple.Create(jobID, job.Count() - 1); ends.Add(allTasks[key].Item2); } model.AddMaxEquality(objVar, ends); model.Minimize(objVar); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("Solution:"); Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>(); for (int jobID = 0; jobID < allJobs.Count(); ++jobID) { var job = allJobs[jobID]; for (int taskID = 0; taskID < job.Count(); ++taskID) { var task = job[taskID]; var key = Tuple.Create(jobID, taskID); int start = (int)solver.Value(allTasks[key].Item1); if (!assignedJobs.ContainsKey(task.machine)) { assignedJobs.Add(task.machine, new List<AssignedTask>()); } assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration)); } } // Create per machine output lines. String output = ""; foreach (int machine in allMachines) { // Sort by starting time. assignedJobs[machine].Sort(); String solLineTasks = $"Machine {machine}: "; String solLine = " "; foreach (var assignedTask in assignedJobs[machine]) { String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}"; // Add spaces to output to align columns. solLineTasks += $"{name,-15}"; String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]"; // Add spaces to output to align columns. solLine += $"{solTmp,-15}"; } output += solLineTasks + "\n"; output += solLine + "\n"; } // Finally print the solution found. Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}"); Console.WriteLine($"\n{output}"); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }