Masalah Toko Pekerjaan

Salah satu masalah penjadwalan yang umum adalah toko lowongan, di mana beberapa pekerjaan diproses di beberapa komputer.

Setiap tugas terdiri dari urutan tugas, yang harus dilakukan dalam urutannya, dan setiap tugas harus diproses di komputer tertentu. Misalnya, pekerjaan dapat berupa produksi satu item konsumen, seperti sebuah mobil. Masalahnya adalah menjadwalkan tugas pada komputer untuk meminimalkan length dari jadwal—waktu yang dibutuhkan untuk menyelesaikan semua tugas.

Ada beberapa kendala untuk masalah di lapangan kerja:

  • Tidak ada tugas untuk sebuah tugas yang dapat dimulai hingga tugas sebelumnya untuk tugas tersebut selesai.
  • Sebuah komputer hanya dapat mengerjakan satu tugas dalam satu waktu.
  • Sebuah tugas, setelah dimulai, harus dijalankan hingga selesai.

Contoh Soal

Di bawah ini adalah contoh sederhana dari permasalahan pekerjaan, di mana setiap tugas diberi label dengan sepasang angka (m, p) di mana m adalah jumlah mesin yang harus diproses pada dan p adalah waktu pemrosesan tugas — jumlah waktu yang dibutuhkan. (Penomoran tugas dan mesin dimulai dari 0.)

  • pekerjaan 0 = [(0, 3), (1, 2), (2, 2)]
  • pekerjaan 1 = [(0, 2), (2, 1), (1, 4)]
  • pekerjaan 2 = [(1, 4), (2, 3)]

Dalam contoh, pekerjaan 0 memiliki tiga tugas. Yang pertama, (0, 3), harus diproses pada mesin 0 dalam 3 unit waktu. Yang kedua, (1, 2), harus diproses pada mesin 1 dalam 2 unit waktu, dan seterusnya. Secara keseluruhan, ada delapan tugas.

Solusi untuk masalah tersebut

Solusi untuk masalah toko pekerjaan adalah penugasan waktu mulai , yang memenuhi batasan di atas. Diagram di bawah ini menunjukkan satu kemungkinan solusi untuk masalah tersebut: rentang waktu jadwal jobshop yang kurang optimal

Anda dapat memeriksa apakah tugas untuk setiap tugas dijadwalkan pada waktu yang tidak tumpang-tindih interval, dalam urutan yang diberikan oleh masalah.

Panjang solusi ini adalah 12, yang merupakan pertama kalinya ketika ketiga tugas telah selesai. Namun, seperti yang akan Anda lihat di bawah, ini bukan solusi yang optimal untuk menyelesaikan masalah.

Variabel dan batasan untuk masalah

Bagian ini menjelaskan cara menyiapkan variabel dan batasan untuk masalah. Pertama, biarkan task(i, j) menunjukkan tugas ke-j dalam urutan untuk tugas i. Sebagai contoh, task(0, 2) menunjukkan tugas kedua untuk tugas 0, yang sesuai dengan pasangan (1, 2) dalam deskripsi soal.

Selanjutnya, tentukan ti, j sebagai waktu mulai untuk task(i, j). Tujuan ti, j adalah variabel dalam masalah lowongan kerja. Mencari solusi melibatkan penentuan nilai untuk variabel ini yang memenuhi persyaratan dari masalah tersebut.

Ada dua jenis batasan untuk masalah di toko pekerjaan:

  • Batasan prioritas — Batasan ini muncul dari kondisi untuk dua tugas berturut-turut dalam pekerjaan yang sama, tugas pertama harus diselesaikan sebelum dapat dimulai. Misalnya, task(0, 2) dan task(0, 3) adalah beberapa tugas berurutan untuk tugas 0. Karena waktu pemrosesan untuk task(0, 2) adalah 2, waktu mulai untuk task(0, 3) harus setidaknya 2 unit waktu setelah waktu mulai untuk tugas 2. (Mungkin tugas 2 adalah mengecat pintu, dan butuh waktu dua jam untuk mengecatnya dry.) Hasilnya, Anda mendapatkan batasan berikut:
    • t0, 2 + 2 <= t0, 3
  • Tidak ada batasan yang tumpang-tindih — Batasan ini muncul dari batasan komputer tidak dapat mengerjakan dua tugas sekaligus. Misalnya, tugas(0, 2) dan tugas(2, 1) keduanya diproses di mesin 1. Karena waktu pemrosesan mereka masing-masing adalah 2 dan 4, salah satu dari harus memenuhi batasan:
    • t0, 2 + 2 <= t2, 1 (jika task(0, 2) dijadwalkan sebelum task(2, 1)) atau
    • t2, 1 + 4 <= t0, 2 (jika task(2, 1) dijadwalkan sebelum task(0, 2)).

Objektif untuk masalah

Tujuan dari masalah di toko kerja ini adalah untuk meminimalkan makespan: jangka waktu dari waktu mulai paling awal untuk tugas tersebut hingga waktu berakhir paling lambat

Solusi Program

Bagian berikut ini menjelaskan elemen utama program yang memecahkan masalah di lapangan kerja.

Mengimpor library

Kode berikut akan mengimpor library yang diperlukan.

Python

import collections
from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

Menentukan data

Selanjutnya, program mendefinisikan data untuk masalah tersebut.

Python

jobs_data = [  # task = (machine_id, processing_time).
    [(0, 3), (1, 2), (2, 2)],  # Job0
    [(0, 2), (2, 1), (1, 4)],  # Job1
    [(1, 4), (2, 3)],  # Job2
]

machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)

C++

using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
using Job = std::vector<Task>;
std::vector<Job> jobs_data = {
    {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
    {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
    {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
};

int64_t num_machines = 0;
for (const auto& job : jobs_data) {
  for (const auto& [machine, _] : job) {
    num_machines = std::max(num_machines, 1 + machine);
  }
}

std::vector<int> all_machines(num_machines);
std::iota(all_machines.begin(), all_machines.end(), 0);

// Computes horizon dynamically as the sum of all durations.
int64_t horizon = 0;
for (const auto& job : jobs_data) {
  for (const auto& [_, time] : job) {
    horizon += time;
  }
}

Java

class Task {
  int machine;
  int duration;
  Task(int machine, int duration) {
    this.machine = machine;
    this.duration = duration;
  }
}

final List<List<Task>> allJobs =
    Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
        Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
        Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
    );

int numMachines = 1;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    numMachines = max(numMachines, 1 + task.machine);
  }
}
final int[] allMachines = IntStream.range(0, numMachines).toArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
for (List<Task> job : allJobs) {
  for (Task task : job) {
    horizon += task.duration;
  }
}

C#

var allJobs =
    new[] {
        new[] {
            // job0
            new { machine = 0, duration = 3 }, // task0
            new { machine = 1, duration = 2 }, // task1
            new { machine = 2, duration = 2 }, // task2
        }
            .ToList(),
        new[] {
            // job1
            new { machine = 0, duration = 2 }, // task0
            new { machine = 2, duration = 1 }, // task1
            new { machine = 1, duration = 4 }, // task2
        }
            .ToList(),
        new[] {
            // job2
            new { machine = 1, duration = 4 }, // task0
            new { machine = 2, duration = 3 }, // task1
        }
            .ToList(),
    }
        .ToList();

int numMachines = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        numMachines = Math.Max(numMachines, 1 + task.machine);
    }
}
int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
foreach (var job in allJobs)
{
    foreach (var task in job)
    {
        horizon += task.duration;
    }
}

Mendeklarasikan model

Kode berikut mendeklarasikan model untuk masalah.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Menentukan variabel

Kode berikut mendefinisikan variabel dalam masalah.

Python

# Named tuple to store information about created variables.
task_type = collections.namedtuple("task_type", "start end interval")
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple(
    "assigned_task_type", "start job index duration"
)

# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)

for job_id, job in enumerate(jobs_data):
    for task_id, task in enumerate(job):
        machine, duration = task
        suffix = f"_{job_id}_{task_id}"
        start_var = model.new_int_var(0, horizon, "start" + suffix)
        end_var = model.new_int_var(0, horizon, "end" + suffix)
        interval_var = model.new_interval_var(
            start_var, duration, end_var, "interval" + suffix
        )
        all_tasks[job_id, task_id] = task_type(
            start=start_var, end=end_var, interval=interval_var
        )
        machine_to_intervals[machine].append(interval_var)

C++

struct TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
};

using TaskID = std::tuple<int, int>;  // (job_id, task_id)
std::map<TaskID, TaskType> all_tasks;
std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size(); ++task_id) {
    const auto [machine, duration] = job[task_id];
    std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
    IntVar start = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("start") + suffix);
    IntVar end = cp_model.NewIntVar({0, horizon})
                     .WithName(std::string("end") + suffix);
    IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                               .WithName(std::string("interval") + suffix);

    TaskID key = std::make_tuple(job_id, task_id);
    all_tasks.emplace(key, TaskType{/*.start=*/start,
                                    /*.end=*/end,
                                    /*.interval=*/interval});
    machine_to_intervals[machine].push_back(interval);
  }
}

Java

class TaskType {
  IntVar start;
  IntVar end;
  IntervalVar interval;
}
Map<List<Integer>, TaskType> allTasks = new HashMap<>();
Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size(); ++taskID) {
    Task task = job.get(taskID);
    String suffix = "_" + jobID + "_" + taskID;

    TaskType taskType = new TaskType();
    taskType.start = model.newIntVar(0, horizon, "start" + suffix);
    taskType.end = model.newIntVar(0, horizon, "end" + suffix);
    taskType.interval = model.newIntervalVar(
        taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

    List<Integer> key = Arrays.asList(jobID, taskID);
    allTasks.put(key, taskType);
    machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
    machineToIntervals.get(task.machine).add(taskType.interval);
  }
}

C#

Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
    new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count(); ++taskID)
    {
        var task = job[taskID];
        String suffix = $"_{jobID}_{taskID}";
        IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
        IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
        IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
        var key = Tuple.Create(jobID, taskID);
        allTasks[key] = Tuple.Create(start, end, interval);
        if (!machineToIntervals.ContainsKey(task.machine))
        {
            machineToIntervals.Add(task.machine, new List<IntervalVar>());
        }
        machineToIntervals[task.machine].Add(interval);
    }
}

Untuk setiap tugas dan tugas, program ini menggunakan metode Metode NewIntVar/new_int_var/newIntVar untuk membuat variabel:

  • start_var: Waktu mulai tugas.
  • end_var: Waktu berakhir tugas.

Batas atas untuk start_var dan end_var adalah horizon, jumlah dari dan waktu pemrosesan untuk semua tugas di semua pekerjaan. horizon cukup besar untuk menyelesaikan semua tugas karena alasan berikut: jika Anda menjadwalkan tugas dalam interval waktu yang tidak tumpang tindih (interval waktu solusi), total durasi jadwal adalah tepat horizon. Jadi, durasi solusi optimal tidak boleh lebih dari horizon.

Selanjutnya, program ini menggunakan NewIntervalVar/new_interval_var/newIntervalVar untuk membuat variabel interval —yang nilainya adalah waktu variabel interval — untuk tugas. Input untuk metode ini adalah:

  • Waktu mulai tugas.
  • Durasi interval waktu untuk tugas.
  • Waktu berakhir tugas.
  • Nama untuk variabel interval.

Dalam solusi apa pun, end_var dikurangi start_var harus sama dengan duration.

Menentukan batasan

Kode berikut menentukan batasan masalah.

Python

# Create and add disjunctive constraints.
for machine in all_machines:
    model.add_no_overlap(machine_to_intervals[machine])

# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
    for task_id in range(len(job) - 1):
        model.add(
            all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
        )

C++

// Create and add disjunctive constraints.
for (const auto machine : all_machines) {
  cp_model.AddNoOverlap(machine_to_intervals[machine]);
}

// Precedences inside a job.
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
    TaskID key = std::make_tuple(job_id, task_id);
    TaskID next_key = std::make_tuple(job_id, task_id + 1);
    cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
  }
}

Java

// Create and add disjunctive constraints.
for (int machine : allMachines) {
  List<IntervalVar> list = machineToIntervals.get(machine);
  model.addNoOverlap(list);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
    List<Integer> prevKey = Arrays.asList(jobID, taskID);
    List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
    model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
  }
}

C#

// Create and add disjunctive constraints.
foreach (int machine in allMachines)
{
    model.AddNoOverlap(machineToIntervals[machine]);
}

// Precedences inside a job.
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
    {
        var key = Tuple.Create(jobID, taskID);
        var nextKey = Tuple.Create(jobID, taskID + 1);
        model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
    }
}

Program ini menggunakan metode AddNoOverlap/add_no_overlap/addNoOverlap model untuk membuat tidak ada batasan tumpang tindih, yang mencegah tugas untuk komputer yang sama agar tidak tumpang tindih dalam waktu.

Selanjutnya, program menambahkan batasan preseden, yang mencegah tugas yang berurutan untuk pekerjaan yang sama agar tidak tumpang tindih dalam waktu yang ditentukan. Untuk setiap pekerjaan dan setiap tugas dalam pekerjaan, pembatas linier ditambahkan untuk menentukan bahwa waktu sebelum tugas terjadi sebelum waktu mulai tugas berikutnya dalam pekerjaan.

Menentukan tujuan

Kode berikut menentukan tujuan dalam masalah.

Python

# Makespan objective.
obj_var = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(
    obj_var,
    [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
)
model.minimize(obj_var)

C++

// Makespan objective.
IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

std::vector<IntVar> ends;
for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
  const auto& job = jobs_data[job_id];
  TaskID key = std::make_tuple(job_id, job.size() - 1);
  ends.push_back(all_tasks[key].end);
}
cp_model.AddMaxEquality(obj_var, ends);
cp_model.Minimize(obj_var);

Java

// Makespan objective.
IntVar objVar = model.newIntVar(0, horizon, "makespan");
List<IntVar> ends = new ArrayList<>();
for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
  List<Task> job = allJobs.get(jobID);
  List<Integer> key = Arrays.asList(jobID, job.size() - 1);
  ends.add(allTasks.get(key).end);
}
model.addMaxEquality(objVar, ends);
model.minimize(objVar);

C#

// Makespan objective.
IntVar objVar = model.NewIntVar(0, horizon, "makespan");

List<IntVar> ends = new List<IntVar>();
for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
{
    var job = allJobs[jobID];
    var key = Tuple.Create(jobID, job.Count() - 1);
    ends.Add(allTasks[key].Item2);
}
model.AddMaxEquality(objVar, ends);
model.Minimize(objVar);

Kode ini membuat variabel objektif dan membatasinya menjadi akhir dari semua tugas.

Memanggil pemecah masalah

Kode berikut memanggil pemecah.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Menampilkan hasil

Kode berikut menampilkan hasilnya, termasuk jadwal dan tugas yang optimal dengan interval tertentu.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print("Solution:")
    # Create one list of assigned tasks per machine.
    assigned_jobs = collections.defaultdict(list)
    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine = task[0]
            assigned_jobs[machine].append(
                assigned_task_type(
                    start=solver.value(all_tasks[job_id, task_id].start),
                    job=job_id,
                    index=task_id,
                    duration=task[1],
                )
            )

    # Create per machine output lines.
    output = ""
    for machine in all_machines:
        # Sort by starting time.
        assigned_jobs[machine].sort()
        sol_line_tasks = "Machine " + str(machine) + ": "
        sol_line = "           "

        for assigned_task in assigned_jobs[machine]:
            name = f"job_{assigned_task.job}_task_{assigned_task.index}"
            # add spaces to output to align columns.
            sol_line_tasks += f"{name:15}"

            start = assigned_task.start
            duration = assigned_task.duration
            sol_tmp = f"[{start},{start + duration}]"
            # add spaces to output to align columns.
            sol_line += f"{sol_tmp:15}"

        sol_line += "\n"
        sol_line_tasks += "\n"
        output += sol_line_tasks
        output += sol_line

    # Finally print the solution found.
    print(f"Optimal Schedule Length: {solver.objective_value}")
    print(output)
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Solution:";
  // create one list of assigned tasks per machine.
  struct AssignedTaskType {
    int job_id;
    int task_id;
    int64_t start;
    int64_t duration;

    bool operator<(const AssignedTaskType& rhs) const {
      return std::tie(this->start, this->duration) <
             std::tie(rhs.start, rhs.duration);
    }
  };

  std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      TaskID key = std::make_tuple(job_id, task_id);
      int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
      assigned_jobs[machine].push_back(
          AssignedTaskType{/*.job_id=*/job_id,
                           /*.task_id=*/task_id,
                           /*.start=*/start,
                           /*.duration=*/duration});
    }
  }

  // Create per machine output lines.
  std::string output = "";
  for (const auto machine : all_machines) {
    // Sort by starting time.
    std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
    std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
    std::string sol_line = "           ";

    for (const auto& assigned_task : assigned_jobs[machine]) {
      std::string name = absl::StrFormat(
          "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
      // Add spaces to output to align columns.
      sol_line_tasks += absl::StrFormat("%-15s", name);

      int64_t start = assigned_task.start;
      int64_t duration = assigned_task.duration;
      std::string sol_tmp =
          absl::StrFormat("[%i,%i]", start, start + duration);
      // Add spaces to output to align columns.
      sol_line += absl::StrFormat("%-15s", sol_tmp);
    }
    output += sol_line_tasks + "\n";
    output += sol_line + "\n";
  }
  // Finally print the solution found.
  LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
  LOG(INFO) << "\n" << output;
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  class AssignedTask {
    int jobID;
    int taskID;
    int start;
    int duration;
    // Ctor
    AssignedTask(int jobID, int taskID, int start, int duration) {
      this.jobID = jobID;
      this.taskID = taskID;
      this.start = start;
      this.duration = duration;
    }
  }
  class SortTasks implements Comparator<AssignedTask> {
    @Override
    public int compare(AssignedTask a, AssignedTask b) {
      if (a.start != b.start) {
        return a.start - b.start;
      } else {
        return a.duration - b.duration;
      }
    }
  }
  System.out.println("Solution:");
  // Create one list of assigned tasks per machine.
  Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
  for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
    List<Task> job = allJobs.get(jobID);
    for (int taskID = 0; taskID < job.size(); ++taskID) {
      Task task = job.get(taskID);
      List<Integer> key = Arrays.asList(jobID, taskID);
      AssignedTask assignedTask = new AssignedTask(
          jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
      assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
      assignedJobs.get(task.machine).add(assignedTask);
    }
  }

  // Create per machine output lines.
  String output = "";
  for (int machine : allMachines) {
    // Sort by starting time.
    Collections.sort(assignedJobs.get(machine), new SortTasks());
    String solLineTasks = "Machine " + machine + ": ";
    String solLine = "           ";

    for (AssignedTask assignedTask : assignedJobs.get(machine)) {
      String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
      // Add spaces to output to align columns.
      solLineTasks += String.format("%-15s", name);

      String solTmp =
          "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
      // Add spaces to output to align columns.
      solLine += String.format("%-15s", solTmp);
    }
    output += solLineTasks + "%n";
    output += solLine + "%n";
  }
  System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
  System.out.printf(output);
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("Solution:");

    Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
    for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
    {
        var job = allJobs[jobID];
        for (int taskID = 0; taskID < job.Count(); ++taskID)
        {
            var task = job[taskID];
            var key = Tuple.Create(jobID, taskID);
            int start = (int)solver.Value(allTasks[key].Item1);
            if (!assignedJobs.ContainsKey(task.machine))
            {
                assignedJobs.Add(task.machine, new List<AssignedTask>());
            }
            assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
        }
    }

    // Create per machine output lines.
    String output = "";
    foreach (int machine in allMachines)
    {
        // Sort by starting time.
        assignedJobs[machine].Sort();
        String solLineTasks = $"Machine {machine}: ";
        String solLine = "           ";

        foreach (var assignedTask in assignedJobs[machine])
        {
            String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
            // Add spaces to output to align columns.
            solLineTasks += $"{name,-15}";

            String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
            // Add spaces to output to align columns.
            solLine += $"{solTmp,-15}";
        }
        output += solLineTasks + "\n";
        output += solLine + "\n";
    }
    // Finally print the solution found.
    Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
    Console.WriteLine($"\n{output}");
}
else
{
    Console.WriteLine("No solution found.");
}

Jadwal optimal ditampilkan di bawah ini:

 Optimal Schedule Length: 11
Machine 0: job_0_0   job_1_0
           [0,3]     [3,5]
Machine 1: job_2_0   job_0_1   job_1_2
           [0,4]     [4,6]     [7,11]
Machine 2: job_1_1   job_0_2   job_2_1
           [5,6]     [6,8]     [8,11]

Pembaca yang bermata elang memeriksa mesin 1 mungkin bertanya-tanya mengapa job_1_2 dijadwalkan pada waktu 7 alih-alih waktu 6. Keduanya adalah solusi yang valid, tetapi ingatlah: tujuannya adalah meminimalkan makespan. Memindahkan job_1_2 lebih awal tidak akan mengurangi makespan , sehingga kedua solusi tersebut sama dari sudut pandang pemecah masalah.

Seluruh program

Akhirnya, inilah seluruh program untuk permasalahan di toko pekerjaan.

Python

"""Minimal jobshop example."""
import collections
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal jobshop problem."""
    # Data.
    jobs_data = [  # task = (machine_id, processing_time).
        [(0, 3), (1, 2), (2, 2)],  # Job0
        [(0, 2), (2, 1), (1, 4)],  # Job1
        [(1, 4), (2, 3)],  # Job2
    ]

    machines_count = 1 + max(task[0] for job in jobs_data for task in job)
    all_machines = range(machines_count)
    # Computes horizon dynamically as the sum of all durations.
    horizon = sum(task[1] for job in jobs_data for task in job)

    # Create the model.
    model = cp_model.CpModel()

    # Named tuple to store information about created variables.
    task_type = collections.namedtuple("task_type", "start end interval")
    # Named tuple to manipulate solution information.
    assigned_task_type = collections.namedtuple(
        "assigned_task_type", "start job index duration"
    )

    # Creates job intervals and add to the corresponding machine lists.
    all_tasks = {}
    machine_to_intervals = collections.defaultdict(list)

    for job_id, job in enumerate(jobs_data):
        for task_id, task in enumerate(job):
            machine, duration = task
            suffix = f"_{job_id}_{task_id}"
            start_var = model.new_int_var(0, horizon, "start" + suffix)
            end_var = model.new_int_var(0, horizon, "end" + suffix)
            interval_var = model.new_interval_var(
                start_var, duration, end_var, "interval" + suffix
            )
            all_tasks[job_id, task_id] = task_type(
                start=start_var, end=end_var, interval=interval_var
            )
            machine_to_intervals[machine].append(interval_var)

    # Create and add disjunctive constraints.
    for machine in all_machines:
        model.add_no_overlap(machine_to_intervals[machine])

    # Precedences inside a job.
    for job_id, job in enumerate(jobs_data):
        for task_id in range(len(job) - 1):
            model.add(
                all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
            )

    # Makespan objective.
    obj_var = model.new_int_var(0, horizon, "makespan")
    model.add_max_equality(
        obj_var,
        [all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
    )
    model.minimize(obj_var)

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print("Solution:")
        # Create one list of assigned tasks per machine.
        assigned_jobs = collections.defaultdict(list)
        for job_id, job in enumerate(jobs_data):
            for task_id, task in enumerate(job):
                machine = task[0]
                assigned_jobs[machine].append(
                    assigned_task_type(
                        start=solver.value(all_tasks[job_id, task_id].start),
                        job=job_id,
                        index=task_id,
                        duration=task[1],
                    )
                )

        # Create per machine output lines.
        output = ""
        for machine in all_machines:
            # Sort by starting time.
            assigned_jobs[machine].sort()
            sol_line_tasks = "Machine " + str(machine) + ": "
            sol_line = "           "

            for assigned_task in assigned_jobs[machine]:
                name = f"job_{assigned_task.job}_task_{assigned_task.index}"
                # add spaces to output to align columns.
                sol_line_tasks += f"{name:15}"

                start = assigned_task.start
                duration = assigned_task.duration
                sol_tmp = f"[{start},{start + duration}]"
                # add spaces to output to align columns.
                sol_line += f"{sol_tmp:15}"

            sol_line += "\n"
            sol_line_tasks += "\n"
            output += sol_line_tasks
            output += sol_line

        # Finally print the solution found.
        print(f"Optimal Schedule Length: {solver.objective_value}")
        print(output)
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts: {solver.num_conflicts}")
    print(f"  - branches : {solver.num_branches}")
    print(f"  - wall time: {solver.wall_time}s")


if __name__ == "__main__":
    main()

C++

// Nurse scheduling problem with shift requests.
#include <stdlib.h>

#include <algorithm>
#include <cstdint>
#include <map>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MinimalJobshopSat() {
  using Task = std::tuple<int64_t, int64_t>;  // (machine_id, processing_time)
  using Job = std::vector<Task>;
  std::vector<Job> jobs_data = {
      {{0, 3}, {1, 2}, {2, 2}},  // Job_0: Task_0 Task_1 Task_2
      {{0, 2}, {2, 1}, {1, 4}},  // Job_1: Task_0 Task_1 Task_2
      {{1, 4}, {2, 3}},          // Job_2: Task_0 Task_1
  };

  int64_t num_machines = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [machine, _] : job) {
      num_machines = std::max(num_machines, 1 + machine);
    }
  }

  std::vector<int> all_machines(num_machines);
  std::iota(all_machines.begin(), all_machines.end(), 0);

  // Computes horizon dynamically as the sum of all durations.
  int64_t horizon = 0;
  for (const auto& job : jobs_data) {
    for (const auto& [_, time] : job) {
      horizon += time;
    }
  }

  // Creates the model.
  CpModelBuilder cp_model;

  struct TaskType {
    IntVar start;
    IntVar end;
    IntervalVar interval;
  };

  using TaskID = std::tuple<int, int>;  // (job_id, task_id)
  std::map<TaskID, TaskType> all_tasks;
  std::map<int64_t, std::vector<IntervalVar>> machine_to_intervals;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size(); ++task_id) {
      const auto [machine, duration] = job[task_id];
      std::string suffix = absl::StrFormat("_%d_%d", job_id, task_id);
      IntVar start = cp_model.NewIntVar({0, horizon})
                         .WithName(std::string("start") + suffix);
      IntVar end = cp_model.NewIntVar({0, horizon})
                       .WithName(std::string("end") + suffix);
      IntervalVar interval = cp_model.NewIntervalVar(start, duration, end)
                                 .WithName(std::string("interval") + suffix);

      TaskID key = std::make_tuple(job_id, task_id);
      all_tasks.emplace(key, TaskType{/*.start=*/start,
                                      /*.end=*/end,
                                      /*.interval=*/interval});
      machine_to_intervals[machine].push_back(interval);
    }
  }

  // Create and add disjunctive constraints.
  for (const auto machine : all_machines) {
    cp_model.AddNoOverlap(machine_to_intervals[machine]);
  }

  // Precedences inside a job.
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    for (int task_id = 0; task_id < job.size() - 1; ++task_id) {
      TaskID key = std::make_tuple(job_id, task_id);
      TaskID next_key = std::make_tuple(job_id, task_id + 1);
      cp_model.AddGreaterOrEqual(all_tasks[next_key].start, all_tasks[key].end);
    }
  }

  // Makespan objective.
  IntVar obj_var = cp_model.NewIntVar({0, horizon}).WithName("makespan");

  std::vector<IntVar> ends;
  for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
    const auto& job = jobs_data[job_id];
    TaskID key = std::make_tuple(job_id, job.size() - 1);
    ends.push_back(all_tasks[key].end);
  }
  cp_model.AddMaxEquality(obj_var, ends);
  cp_model.Minimize(obj_var);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Solution:";
    // create one list of assigned tasks per machine.
    struct AssignedTaskType {
      int job_id;
      int task_id;
      int64_t start;
      int64_t duration;

      bool operator<(const AssignedTaskType& rhs) const {
        return std::tie(this->start, this->duration) <
               std::tie(rhs.start, rhs.duration);
      }
    };

    std::map<int64_t, std::vector<AssignedTaskType>> assigned_jobs;
    for (int job_id = 0; job_id < jobs_data.size(); ++job_id) {
      const auto& job = jobs_data[job_id];
      for (int task_id = 0; task_id < job.size(); ++task_id) {
        const auto [machine, duration] = job[task_id];
        TaskID key = std::make_tuple(job_id, task_id);
        int64_t start = SolutionIntegerValue(response, all_tasks[key].start);
        assigned_jobs[machine].push_back(
            AssignedTaskType{/*.job_id=*/job_id,
                             /*.task_id=*/task_id,
                             /*.start=*/start,
                             /*.duration=*/duration});
      }
    }

    // Create per machine output lines.
    std::string output = "";
    for (const auto machine : all_machines) {
      // Sort by starting time.
      std::sort(assigned_jobs[machine].begin(), assigned_jobs[machine].end());
      std::string sol_line_tasks = "Machine " + std::to_string(machine) + ": ";
      std::string sol_line = "           ";

      for (const auto& assigned_task : assigned_jobs[machine]) {
        std::string name = absl::StrFormat(
            "job_%d_task_%d", assigned_task.job_id, assigned_task.task_id);
        // Add spaces to output to align columns.
        sol_line_tasks += absl::StrFormat("%-15s", name);

        int64_t start = assigned_task.start;
        int64_t duration = assigned_task.duration;
        std::string sol_tmp =
            absl::StrFormat("[%i,%i]", start, start + duration);
        // Add spaces to output to align columns.
        sol_line += absl::StrFormat("%-15s", sol_tmp);
      }
      output += sol_line_tasks + "\n";
      output += sol_line + "\n";
    }
    // Finally print the solution found.
    LOG(INFO) << "Optimal Schedule Length: " << response.objective_value();
    LOG(INFO) << "\n" << output;
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MinimalJobshopSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import static java.lang.Math.max;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

/** Minimal Jobshop problem. */
public class MinimalJobshopSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    class Task {
      int machine;
      int duration;
      Task(int machine, int duration) {
        this.machine = machine;
        this.duration = duration;
      }
    }

    final List<List<Task>> allJobs =
        Arrays.asList(Arrays.asList(new Task(0, 3), new Task(1, 2), new Task(2, 2)), // Job0
            Arrays.asList(new Task(0, 2), new Task(2, 1), new Task(1, 4)), // Job1
            Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
        );

    int numMachines = 1;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        numMachines = max(numMachines, 1 + task.machine);
      }
    }
    final int[] allMachines = IntStream.range(0, numMachines).toArray();

    // Computes horizon dynamically as the sum of all durations.
    int horizon = 0;
    for (List<Task> job : allJobs) {
      for (Task task : job) {
        horizon += task.duration;
      }
    }

    // Creates the model.
    CpModel model = new CpModel();

    class TaskType {
      IntVar start;
      IntVar end;
      IntervalVar interval;
    }
    Map<List<Integer>, TaskType> allTasks = new HashMap<>();
    Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size(); ++taskID) {
        Task task = job.get(taskID);
        String suffix = "_" + jobID + "_" + taskID;

        TaskType taskType = new TaskType();
        taskType.start = model.newIntVar(0, horizon, "start" + suffix);
        taskType.end = model.newIntVar(0, horizon, "end" + suffix);
        taskType.interval = model.newIntervalVar(
            taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

        List<Integer> key = Arrays.asList(jobID, taskID);
        allTasks.put(key, taskType);
        machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
        machineToIntervals.get(task.machine).add(taskType.interval);
      }
    }

    // Create and add disjunctive constraints.
    for (int machine : allMachines) {
      List<IntervalVar> list = machineToIntervals.get(machine);
      model.addNoOverlap(list);
    }

    // Precedences inside a job.
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      for (int taskID = 0; taskID < job.size() - 1; ++taskID) {
        List<Integer> prevKey = Arrays.asList(jobID, taskID);
        List<Integer> nextKey = Arrays.asList(jobID, taskID + 1);
        model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end);
      }
    }

    // Makespan objective.
    IntVar objVar = model.newIntVar(0, horizon, "makespan");
    List<IntVar> ends = new ArrayList<>();
    for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
      List<Task> job = allJobs.get(jobID);
      List<Integer> key = Arrays.asList(jobID, job.size() - 1);
      ends.add(allTasks.get(key).end);
    }
    model.addMaxEquality(objVar, ends);
    model.minimize(objVar);

    // Creates a solver and solves the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      class AssignedTask {
        int jobID;
        int taskID;
        int start;
        int duration;
        // Ctor
        AssignedTask(int jobID, int taskID, int start, int duration) {
          this.jobID = jobID;
          this.taskID = taskID;
          this.start = start;
          this.duration = duration;
        }
      }
      class SortTasks implements Comparator<AssignedTask> {
        @Override
        public int compare(AssignedTask a, AssignedTask b) {
          if (a.start != b.start) {
            return a.start - b.start;
          } else {
            return a.duration - b.duration;
          }
        }
      }
      System.out.println("Solution:");
      // Create one list of assigned tasks per machine.
      Map<Integer, List<AssignedTask>> assignedJobs = new HashMap<>();
      for (int jobID = 0; jobID < allJobs.size(); ++jobID) {
        List<Task> job = allJobs.get(jobID);
        for (int taskID = 0; taskID < job.size(); ++taskID) {
          Task task = job.get(taskID);
          List<Integer> key = Arrays.asList(jobID, taskID);
          AssignedTask assignedTask = new AssignedTask(
              jobID, taskID, (int) solver.value(allTasks.get(key).start), task.duration);
          assignedJobs.computeIfAbsent(task.machine, (Integer k) -> new ArrayList<>());
          assignedJobs.get(task.machine).add(assignedTask);
        }
      }

      // Create per machine output lines.
      String output = "";
      for (int machine : allMachines) {
        // Sort by starting time.
        Collections.sort(assignedJobs.get(machine), new SortTasks());
        String solLineTasks = "Machine " + machine + ": ";
        String solLine = "           ";

        for (AssignedTask assignedTask : assignedJobs.get(machine)) {
          String name = "job_" + assignedTask.jobID + "_task_" + assignedTask.taskID;
          // Add spaces to output to align columns.
          solLineTasks += String.format("%-15s", name);

          String solTmp =
              "[" + assignedTask.start + "," + (assignedTask.start + assignedTask.duration) + "]";
          // Add spaces to output to align columns.
          solLine += String.format("%-15s", solTmp);
        }
        output += solLineTasks + "%n";
        output += solLine + "%n";
      }
      System.out.printf("Optimal Schedule Length: %f%n", solver.objectiveValue());
      System.out.printf(output);
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private MinimalJobshopSat() {}
}

C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class ScheduleRequestsSat
{
    private class AssignedTask : IComparable
    {
        public int jobID;
        public int taskID;
        public int start;
        public int duration;

        public AssignedTask(int jobID, int taskID, int start, int duration)
        {
            this.jobID = jobID;
            this.taskID = taskID;
            this.start = start;
            this.duration = duration;
        }

        public int CompareTo(object obj)
        {
            if (obj == null)
                return 1;

            AssignedTask otherTask = obj as AssignedTask;
            if (otherTask != null)
            {
                if (this.start != otherTask.start)
                    return this.start.CompareTo(otherTask.start);
                else
                    return this.duration.CompareTo(otherTask.duration);
            }
            else
                throw new ArgumentException("Object is not a Temperature");
        }
    }

    public static void Main(String[] args)
    {
        var allJobs =
            new[] {
                new[] {
                    // job0
                    new { machine = 0, duration = 3 }, // task0
                    new { machine = 1, duration = 2 }, // task1
                    new { machine = 2, duration = 2 }, // task2
                }
                    .ToList(),
                new[] {
                    // job1
                    new { machine = 0, duration = 2 }, // task0
                    new { machine = 2, duration = 1 }, // task1
                    new { machine = 1, duration = 4 }, // task2
                }
                    .ToList(),
                new[] {
                    // job2
                    new { machine = 1, duration = 4 }, // task0
                    new { machine = 2, duration = 3 }, // task1
                }
                    .ToList(),
            }
                .ToList();

        int numMachines = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                numMachines = Math.Max(numMachines, 1 + task.machine);
            }
        }
        int[] allMachines = Enumerable.Range(0, numMachines).ToArray();

        // Computes horizon dynamically as the sum of all durations.
        int horizon = 0;
        foreach (var job in allJobs)
        {
            foreach (var task in job)
            {
                horizon += task.duration;
            }
        }

        // Creates the model.
        CpModel model = new CpModel();

        Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>> allTasks =
            new Dictionary<Tuple<int, int>, Tuple<IntVar, IntVar, IntervalVar>>(); // (start, end, duration)
        Dictionary<int, List<IntervalVar>> machineToIntervals = new Dictionary<int, List<IntervalVar>>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count(); ++taskID)
            {
                var task = job[taskID];
                String suffix = $"_{jobID}_{taskID}";
                IntVar start = model.NewIntVar(0, horizon, "start" + suffix);
                IntVar end = model.NewIntVar(0, horizon, "end" + suffix);
                IntervalVar interval = model.NewIntervalVar(start, task.duration, end, "interval" + suffix);
                var key = Tuple.Create(jobID, taskID);
                allTasks[key] = Tuple.Create(start, end, interval);
                if (!machineToIntervals.ContainsKey(task.machine))
                {
                    machineToIntervals.Add(task.machine, new List<IntervalVar>());
                }
                machineToIntervals[task.machine].Add(interval);
            }
        }

        // Create and add disjunctive constraints.
        foreach (int machine in allMachines)
        {
            model.AddNoOverlap(machineToIntervals[machine]);
        }

        // Precedences inside a job.
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            for (int taskID = 0; taskID < job.Count() - 1; ++taskID)
            {
                var key = Tuple.Create(jobID, taskID);
                var nextKey = Tuple.Create(jobID, taskID + 1);
                model.Add(allTasks[nextKey].Item1 >= allTasks[key].Item2);
            }
        }

        // Makespan objective.
        IntVar objVar = model.NewIntVar(0, horizon, "makespan");

        List<IntVar> ends = new List<IntVar>();
        for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
        {
            var job = allJobs[jobID];
            var key = Tuple.Create(jobID, job.Count() - 1);
            ends.Add(allTasks[key].Item2);
        }
        model.AddMaxEquality(objVar, ends);
        model.Minimize(objVar);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("Solution:");

            Dictionary<int, List<AssignedTask>> assignedJobs = new Dictionary<int, List<AssignedTask>>();
            for (int jobID = 0; jobID < allJobs.Count(); ++jobID)
            {
                var job = allJobs[jobID];
                for (int taskID = 0; taskID < job.Count(); ++taskID)
                {
                    var task = job[taskID];
                    var key = Tuple.Create(jobID, taskID);
                    int start = (int)solver.Value(allTasks[key].Item1);
                    if (!assignedJobs.ContainsKey(task.machine))
                    {
                        assignedJobs.Add(task.machine, new List<AssignedTask>());
                    }
                    assignedJobs[task.machine].Add(new AssignedTask(jobID, taskID, start, task.duration));
                }
            }

            // Create per machine output lines.
            String output = "";
            foreach (int machine in allMachines)
            {
                // Sort by starting time.
                assignedJobs[machine].Sort();
                String solLineTasks = $"Machine {machine}: ";
                String solLine = "           ";

                foreach (var assignedTask in assignedJobs[machine])
                {
                    String name = $"job_{assignedTask.jobID}_task_{assignedTask.taskID}";
                    // Add spaces to output to align columns.
                    solLineTasks += $"{name,-15}";

                    String solTmp = $"[{assignedTask.start},{assignedTask.start+assignedTask.duration}]";
                    // Add spaces to output to align columns.
                    solLine += $"{solTmp,-15}";
                }
                output += solLineTasks + "\n";
                output += solLine + "\n";
            }
            // Finally print the solution found.
            Console.WriteLine($"Optimal Schedule Length: {solver.ObjectiveValue}");
            Console.WriteLine($"\n{output}");
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}