Используйте Depth в своем приложении Android NDK

API глубины помогает камере устройства понять размер и форму реальных объектов в сцене. Он использует камеру для создания изображений глубины или карт глубины, тем самым добавляя уровень реализма AR в ваши приложения. Вы можете использовать информацию, предоставляемую изображением глубины, чтобы виртуальные объекты точно отображались перед объектами реального мира или позади них, обеспечивая захватывающий и реалистичный пользовательский опыт.

Информация о глубине рассчитывается на основе движения и может быть объединена с информацией от аппаратного датчика глубины, такого как датчик времени полета (ToF), если таковой имеется. Для поддержки Depth API устройству не требуется датчик ToF .

Предварительные условия

Прежде чем продолжить, убедитесь, что вы понимаете фундаментальные концепции AR и то, как настроить сеанс ARCore .

Ограничить доступ к устройствам с поддержкой Depth

Если вашему приложению требуется поддержка Depth API, либо потому, что основная часть AR-интерфейса зависит от глубины, либо потому, что для частей приложения, использующих глубину, не существует корректного резервного варианта, вы можете ограничить распространение своего приложения в Google Play. Сохраните на устройствах, поддерживающих Depth API, добавив следующую строку в AndroidManifest.xml в дополнение к изменениям AndroidManifest.xml , описанным в руководстве по включению ARCore :

<uses-feature android:name="com.google.ar.core.depth" />

Включить глубину

В новом сеансе ARCore проверьте, поддерживает ли устройство пользователя Depth. Не все ARCore-совместимые устройства поддерживают Depth API из-за ограничений вычислительной мощности. Для экономии ресурсов глубина в ARCore по умолчанию отключена. Включите режим глубины, чтобы ваше приложение использовало Depth API.

// Check whether the user's device supports the Depth API.
int32_t is_depth_supported = 0;
ArSession_isDepthModeSupported(ar_session, AR_DEPTH_MODE_AUTOMATIC,
                               &is_depth_supported);

// Configure the session for AR_DEPTH_MODE_AUTOMATIC.
ArConfig* ar_config = NULL;
ArConfig_create(ar_session, &ar_config);
if (is_depth_supported) {
  ArConfig_setDepthMode(ar_session, ar_config, AR_DEPTH_MODE_AUTOMATIC);
}
CHECK(ArSession_configure(ar_session, ar_config) == AR_SUCCESS);
ArConfig_destroy(ar_config);

Получение изображений глубины

Вызовите ArFrame_acquireDepthImage16Bits() , чтобы получить изображение глубины для текущего кадра.

// Retrieve the depth image for the current frame, if available.
ArImage* depth_image = NULL;
// If a depth image is available, use it here.
if (ArFrame_acquireDepthImage16Bits(ar_session, ar_frame, &depth_image) !=
    AR_SUCCESS) {
  // No depth image received for this frame.
  // This normally means that depth data is not available yet.
  // Depth data will not be available if there are no tracked
  // feature points. This can happen when there is no motion, or when the
  // camera loses its ability to track objects in the surrounding
  // environment.
  return;
}

Возвращенное изображение предоставляет буфер необработанного изображения, который можно передать во фрагментный шейдер для использования на графическом процессоре для каждого визуализированного объекта, который необходимо перекрыть. Он ориентирован на AR_COORDINATES_2D_OPENGL_NORMALIZED_DEVICE_COORDINATES и может быть изменен на AR_COORDINATES_2D_TEXTURE_NORMALIZED путем вызова ArFrame_transformCoordinates2d() . Как только изображение глубины становится доступным в объектном шейдере, к этим измерениям глубины можно получить прямой доступ для обработки окклюзии.

Понимание значений глубины

Учитывая точку A на наблюдаемой геометрии реального мира и двумерную точку a представляющую ту же точку на изображении глубины, значение, заданное Depth API в a , равно длине CA , проецируемой на главную ось. Это также можно назвать координатой Z A относительно начала координат камеры C . При работе с Depth API важно понимать, что значения глубины — это не длина самого CA луча, а его проекция .

Используйте глубину в шейдерах

Анализ информации о глубине для текущего кадра

Используйте вспомогательные функции DepthGetMillimeters() и DepthGetVisibility() во фрагментном шейдере, чтобы получить доступ к информации о глубине для текущей позиции экрана. Затем используйте эту информацию для выборочного закрытия частей визуализируемого объекта.

// Use DepthGetMillimeters() and DepthGetVisibility() to parse the depth image
// for a given pixel, and compare against the depth of the object to render.
float DepthGetMillimeters(in sampler2D depth_texture, in vec2 depth_uv) {
  // Depth is packed into the red and green components of its texture.
  // The texture is a normalized format, storing millimeters.
  vec3 packedDepthAndVisibility = texture2D(depth_texture, depth_uv).xyz;
  return dot(packedDepthAndVisibility.xy, vec2(255.0, 256.0 * 255.0));
}

// Return a value representing how visible or occluded a pixel is relative
// to the depth image. The range is 0.0 (not visible) to 1.0 (completely
// visible).
float DepthGetVisibility(in sampler2D depth_texture, in vec2 depth_uv,
                         in float asset_depth_mm) {
  float depth_mm = DepthGetMillimeters(depth_texture, depth_uv);

  // Instead of a hard Z-buffer test, allow the asset to fade into the
  // background along a 2 * kDepthTolerancePerMm * asset_depth_mm
  // range centered on the background depth.
  const float kDepthTolerancePerMm = 0.015f;
  float visibility_occlusion = clamp(0.5 * (depth_mm - asset_depth_mm) /
    (kDepthTolerancePerMm * asset_depth_mm) + 0.5, 0.0, 1.0);

 // Use visibility_depth_near to set the minimum depth value. If using
 // this value for occlusion, avoid setting it too close to zero. A depth value
 // of zero signifies that there is no depth data to be found.
  float visibility_depth_near = 1.0 - InverseLerp(
      depth_mm, /*min_depth_mm=*/150.0, /*max_depth_mm=*/200.0);

  // Use visibility_depth_far to set the maximum depth value. If the depth
  // value is too high (outside the range specified by visibility_depth_far),
  // the virtual object may get inaccurately occluded at further distances
  // due to too much noise.
  float visibility_depth_far = InverseLerp(
      depth_mm, /*min_depth_mm=*/7500.0, /*max_depth_mm=*/8000.0);

  const float kOcclusionAlpha = 0.0f;
  float visibility =
      max(max(visibility_occlusion, kOcclusionAlpha),
          max(visibility_depth_near, visibility_depth_far));

  return visibility;
}

Закрывать виртуальные объекты

Окклюдируйте виртуальные объекты в теле фрагментного шейдера. Обновите альфа-канал объекта в зависимости от его глубины. Это отобразит закрытый объект.

// Occlude virtual objects by updating the object’s alpha channel based on its depth.
const float kMetersToMillimeters = 1000.0;

float asset_depth_mm = v_ViewPosition.z * kMetersToMillimeters * -1.;

// Compute the texture coordinates to sample from the depth image.
vec2 depth_uvs = (u_DepthUvTransform * vec3(v_ScreenSpacePosition.xy, 1)).xy;

gl_FragColor.a *= DepthGetVisibility(u_DepthTexture, depth_uvs, asset_depth_mm);

Вы можете визуализировать окклюзию, используя двухпроходный рендеринг или прямой рендеринг для каждого объекта. Эффективность каждого подхода зависит от сложности сцены и других особенностей приложения.

Пообъектный рендеринг вперед

Для каждого объекта прямой рендеринг определяет перекрытие каждого пикселя объекта в его шейдере материала. Если пиксели не видны, они обрезаются, обычно посредством альфа-смешивания, имитируя таким образом окклюзию на устройстве пользователя.

Двухпроходный рендеринг

При двухпроходном рендеринге первый проход рендерит весь виртуальный контент в промежуточный буфер. Второй проход смешивает виртуальную сцену с фоном на основе разницы между глубиной реального мира и глубиной виртуальной сцены. Этот подход не требует дополнительной работы с шейдером, специфичным для объекта, и обычно дает более однородные результаты, чем метод прямого прохода.

Преобразование координат между изображениями камеры и изображениями глубины

Изображения, полученные с помощью ArFrame_acquireCameraImage() могут иметь другое соотношение сторон по сравнению с изображениями глубины. В этом случае изображение глубины представляет собой обрезку изображения с камеры, и не все пиксели изображения с камеры имеют соответствующую действительную оценку глубины.

Чтобы получить координаты изображения глубины для координат на изображении ЦП:

const float cpu_image_coordinates[] = {(float)cpu_coordinate_x,
                                 (float)cpu_coordinate_y};
float texture_coordinates[2];
ArFrame_transformCoordinates2d(
    ar_session, ar_frame, AR_COORDINATES_2D_IMAGE_PIXELS, 1,
    cpu_image_coordinates, AR_COORDINATES_2D_TEXTURE_NORMALIZED,
    texture_coordinates);
if (texture_coordinates[0] < 0 || texture_coordinates[1] < 0) {
  // There are no valid depth coordinates, because the coordinates in the CPU
  // image are in the cropped area of the depth image.
} else {
  int depth_image_width = 0;
  ArImage_getWidth(ar_session, depth_image, &depth_image_width);
  int depth_image_height = 0;
  ArImage_getHeight(ar_session, depth_image, &depth_image_height);

  int depth_coordinate_x = (int)(texture_coordinates[0] * depth_image_width);
  int depth_coordinate_y = (int)(texture_coordinates[1] * depth_image_height);
}

Чтобы получить координаты изображения ЦП для координат изображения глубины:

int depth_image_width = 0;
ArImage_getWidth(ar_session, depth_image, &depth_image_width);
int depth_image_height = 0;
ArImage_getHeight(ar_session, depth_image, &depth_image_height);

float texture_coordinates[] = {
    (float)depth_coordinate_x / (float)depth_image_width,
    (float)depth_coordinate_y / (float)depth_image_height};
float cpu_image_coordinates[2];
ArFrame_transformCoordinates2d(
    ar_session, ar_frame, AR_COORDINATES_2D_TEXTURE_NORMALIZED, 1,
    texture_coordinates, AR_COORDINATES_2D_IMAGE_PIXELS,
    cpu_image_coordinates);

int cpu_image_coordinate_x = (int)cpu_image_coordinates[0];
int cpu_image_coordinate_y = (int)cpu_image_coordinates[1];

Тест на глубину

Хит-тесты позволяют пользователям размещать объекты в реальных местах сцены. Раньше тесты на попадание можно было проводить только на обнаруженных самолетах, ограничивая локации большими плоскими поверхностями, как, например, результаты, показанные зелеными андроидами. В тестах на удар по глубине используются как гладкие, так и необработанные данные о глубине, чтобы обеспечить более точные результаты удара даже на неплоских и слаботекстурированных поверхностях. Это показано красными Андроидами.

Чтобы использовать тесты попадания с поддержкой глубины, вызовите ArFrame_hitTest() и проверьте наличие AR_TRACKABLE_DEPTH_POINT в возвращаемом списке.

// Create a hit test using the Depth API.
ArHitResultList* hit_result_list = NULL;
ArHitResultList_create(ar_session, &hit_result_list);
ArFrame_hitTest(ar_session, ar_frame, hit_x, hit_y, hit_result_list);

int32_t hit_result_list_size = 0;
ArHitResultList_getSize(ar_session, hit_result_list, &hit_result_list_size);

ArHitResult* ar_hit_result = NULL;
for (int32_t i = 0; i < hit_result_list_size; ++i) {
  ArHitResult* ar_hit = NULL;
  ArHitResult_create(ar_session, &ar_hit);
  ArHitResultList_getItem(ar_session, hit_result_list, i, ar_hit);

  ArTrackable* ar_trackable = NULL;
  ArHitResult_acquireTrackable(ar_session, ar_hit, &ar_trackable);
  ArTrackableType ar_trackable_type = AR_TRACKABLE_NOT_VALID;
  ArTrackable_getType(ar_session, ar_trackable, &ar_trackable_type);
  // Creates an anchor if a plane or an oriented point was hit.
  if (AR_TRACKABLE_DEPTH_POINT == ar_trackable_type) {
    // Do something with the hit result.
  }
  ArTrackable_release(ar_trackable);
  ArHitResult_destroy(ar_hit);
}

ArHitResultList_destroy(hit_result_list);

Что дальше

  • Обеспечьте более точное измерение с помощью API Raw Depth .
  • Посетите лабораторию ARCore Depth Lab , где демонстрируются различные способы доступа к данным о глубине.