ARCore ora supporta la stabilizzazione elettronica dell'immagine (EIS), che contribuisce a produrre un'anteprima fluida della fotocamera. La stabilizzazione elettronica dell'immagine (EIS) viene ottenuta osservando il movimento dello smartphone tramite il giroscopio e applicando una mesh di omogrametria compensativa entro i confini della trama della fotocamera che contrasta le piccole vibrazioni. La stabilizzazione elettronica dell'immagine è supportata solo con l'orientamento verticale del dispositivo. Tutti gli orientamenti saranno supportati nella versione 1.39.0 di ARCore.
Esegui query per l'assistenza EIS e attiva EIS
Per attivare EIS, configura la sessione in modo che utilizzi ImageStabilizationMode.EIS
. Se il dispositivo non supporta la funzionalità EIS, verrà generata un'eccezione da ARCore.
if (!session.isImageStabilizationModeSupported(Config.ImageStabilizationMode.EIS)) { return; } Config config = session.getConfig(); config.setImageStabilizationMode(Config.ImageStabilizationMode.EIS); session.configure(config);
if (!session.isImageStabilizationModeSupported(Config.ImageStabilizationMode.EIS)) return session.configure( session.config.apply { imageStabilizationMode = Config.ImageStabilizationMode.EIS } )
Trasformare le coordinate
Quando la stabilizzazione elettronica dell'immagine è attiva, il renderer deve utilizzare le coordinate del dispositivo modificate e le coordinate della texture corrispondenti che incorporano la compensazione EIS durante il rendering dello sfondo della fotocamera. Per ottenere le coordinate compensate dall'EIS, utilizza Frame.transformCoordinates3d()
, utilizzando OPENGL_NORMALIZED_DEVICE_COORDINATES
come input e EIS_NORMALIZED_DEVICE_COORDINATES
come output per ottenere le coordinate del dispositivo 3D e EIS_TEXTURE_NORMALIZED
come output per ottenere le coordinate della texture 3D. Per il momento, l'unico tipo di coordinate di input supportato per Frame.transformCoordinates3d()
è OPENGL_NORMALIZED_DEVICE_COORDINATES
.
final FloatBuffer cameraTexCoords = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D) .order(ByteOrder.nativeOrder()) .asFloatBuffer(); final FloatBuffer screenCoords = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D) .order(ByteOrder.nativeOrder()) .asFloatBuffer(); final FloatBuffer NDC_QUAD_COORDS_BUFFER = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_2D) .order(ByteOrder.nativeOrder()) .asFloatBuffer() .put( new float[] { /*0:*/ -1f, -1f, /*1:*/ +1f, -1f, /*2:*/ -1f, +1f, /*3:*/ +1f, +1f, }); final VertexBuffer screenCoordsVertexBuffer = new VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null); final VertexBuffer cameraTexCoordsVertexBuffer = new VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null); NDC_QUAD_COORDS_BUFFER.rewind(); frame.transformCoordinates3d( Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES, NDC_QUAD_COORDS_BUFFER, Coordinates3d.EIS_NORMALIZED_DEVICE_COORDINATES, screenCoords); screenCoordsVertexBuffer.set(screenCoords); NDC_QUAD_COORDS_BUFFER.rewind(); frame.transformCoordinates3d( Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES, NDC_QUAD_COORDS_BUFFER, Coordinates3d.EIS_TEXTURE_NORMALIZED, cameraTexCoords); cameraTexCoordsVertexBuffer.set(cameraTexCoords);
val COORDS_BUFFER_SIZE_2D = 2 * 4 * Float.SIZE_BYTES val COORDS_BUFFER_SIZE_3D = 3 * 4 * Float.SIZE_BYTES val cameraTexCoords = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D) .order(ByteOrder.nativeOrder()) .asFloatBuffer() val screenCoords = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_3D) .order(ByteOrder.nativeOrder()) .asFloatBuffer() val cameraTexCoordsVertexBuffer = VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null) val screenCoordsVertexBuffer = VertexBuffer(render, /* numberOfEntriesPerVertex= */ 3, null) val NDC_QUAD_COORDS_BUFFER = ByteBuffer.allocateDirect(COORDS_BUFFER_SIZE_2D) .order(ByteOrder.nativeOrder()) .asFloatBuffer() .apply { put( floatArrayOf( /* 0: */ -1f, -1f, /* 1: */ +1f, -1f, /* 2: */ -1f, +1f, /* 3: */ +1f, +1f ) ) } NDC_QUAD_COORDS_BUFFER.rewind() frame.transformCoordinates3d( Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES, NDC_QUAD_COORDS_BUFFER, Coordinates3d.EIS_NORMALIZED_DEVICE_COORDINATES, screenCoords ) screenCoordsVertexBuffer.set(screenCoords) NDC_QUAD_COORDS_BUFFER.rewind() frame.transformCoordinates3d( Coordinates2d.OPENGL_NORMALIZED_DEVICE_COORDINATES, NDC_QUAD_COORDS_BUFFER, Coordinates3d.EIS_TEXTURE_NORMALIZED, cameraTexCoords ) cameraTexCoordsVertexBuffer.set(cameraTexCoords)
Quando la correzione della distorsione è disattivata, le coordinate 3D in uscita sono equivalenti alle loro controparti 2D, con i valori z impostati in modo da non produrre alcuna modifica.
Modificare gli shader
Le coordinate 3D calcolate devono essere passate agli shader di rendering in background. I buffer dei vertici ora sono 3D con EIS:
layout(location = 0) in vec4 a_Position;
layout(location = 1) in vec3 a_CameraTexCoord;
out vec3 v_CameraTexCoord;
void main() {
gl_Position = a_Position;
v_CameraTexCoord = a_CameraTexCoord;
}
Inoltre, lo shader di frammento deve applicare la correzione della prospettiva:
precision mediump float;
uniform samplerExternalOES u_CameraColorTexture;
in vec3 v_CameraTexCoord;
layout(location = 0) out vec4 o_FragColor;
void main() {
vec3 tc = (v_CameraTexCoord / v_CameraTexCoord.z);
o_FragColor = texture(u_CameraColorTexture, tc.xy);
}
Per maggiori dettagli, consulta l'app di esempio hello_eis_kotlin.