Virtuelle Objekte in einer Szene realistisch beleuchten
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Weitere Informationen zur Verwendung der Lichtschätzung in Ihren eigenen Apps
Vorbereitung
Machen Sie sich mit den grundlegenden AR-Konzepten vertraut.
und Konfigurieren einer ARCore-Sitzung beschrieben, bevor du fortfährst.
Konfigurieren Sie die Belichtungsschätzung einmal pro Sitzung für den gewünschten Modus.
Java
// Configure the session with the Lighting Estimation API in ENVIRONMENTAL_HDR mode.
Config config = session.getConfig();
config.setLightEstimationMode(LightEstimationMode.ENVIRONMENTAL_HDR);
session.configure(config);
// Configure the session with the Lighting Estimation API in AMBIENT_INTENSITY mode.
Config config = session.getConfig();
config.setLightEstimationMode(LightEstimationMode.AMBIENT_INTENSITY);
session.configure(config);
// Configure the session with the Lighting Estimation API turned off.
Config config = session.getConfig();
config.setLightEstimationMode(LightEstimationMode.DISABLED);
session.configure(config);
Kotlin
// Configure the session with the Lighting Estimation API in ENVIRONMENTAL_HDR mode.
Config config = session.config
config.lightEstimationMode = LightEstimationMode.ENVIRONMENTAL_HDR
session.configure(config)
// Configure the session with the Lighting Estimation API in AMBIENT_INTENSITY mode.
Config config = session.config
config.lightEstimationMode = LightEstimationMode.AMBIENT_INTENSITY
session.configure(config)
// Configure the session with the Lighting Estimation API turned off.
Config config = session.config
config.lightEstimationMode = LightEstimationMode.DISABLED
session.configure(config)
Wenn Sie den ENVIRONMENTAL_HDR
-Modus konfigurieren möchten, rufen Sie die Lichtschätzung für jeden Frame ab und holen Sie sich dann die gewünschten HDR-Umgebungsbeleuchtungskomponenten.
Java
void update() {
// Get the current frame.
Frame frame = session.update();
// Get the light estimate for the current frame.
LightEstimate lightEstimate = frame.getLightEstimate();
// Get intensity and direction of the main directional light from the current light estimate.
float[] intensity = lightEstimate.getEnvironmentalHdrMainLightIntensity(); // note - currently only out param.
float[] direction = lightEstimate.getEnvironmentalHdrMainLightDirection();
app.setDirectionalLightValues(intensity, direction); // app-specific code.
// Get ambient lighting as spherical harmonics coefficients.
float[] harmonics = lightEstimate.getEnvironmentalHdrAmbientSphericalHarmonics();
app.setAmbientSphericalHarmonicsLightValues(harmonics); // app-specific code.
// Get HDR environmental lighting as a cubemap in linear color space.
Image[] lightmaps = lightEstimate.acquireEnvironmentalHdrCubeMap();
for (int i = 0; i < lightmaps.length /*should be 6*/; ++i) {
app.uploadToTexture(i, lightmaps[i]); // app-specific code.
}
}
Kotlin
fun update() {
// Get the current frame.
val frame = session.update()
// Get the light estimate for the current frame.
val lightEstimate = frame.lightEstimate
// Get intensity and direction of the main directional light from the current light estimate.
val intensity = lightEstimate.environmentalHdrMainLightIntensity
val direction = lightEstimate.environmentalHdrMainLightDirection
app.setDirectionalLightValues(intensity, direction) // app-specific code.
// Get ambient lighting as spherical harmonics coefficients.
val harmonics = lightEstimate.environmentalHdrAmbientSphericalHarmonics
app.ambientSphericalHarmonicsLightValues = harmonics // app-specific code.
// Get HDR environmental lighting as a cubemap in linear color space.
val lightMaps = lightEstimate.acquireEnvironmentalHdrCubeMap();
for ((index, lightMap) in lightMaps.withIndex()) { // 6 maps total.
app.uploadToTexture(index, lightMap); // app-specific code.
}
}
Wenn du die Farbkorrekturkomponente von AMBIENT_INTENSITY
verwenden möchtest
Vermeiden Sie zunächst die Zuweisung einer Farbkorrektur auf jedem Frame, indem Sie eine gemeinsame Zuweisung wiederverwenden.
Java
// Avoid allocation on every frame.
float[] colorCorrection = new float[4];
Kotlin
val colorCorrection = floatArrayOf(0.0f, 0.0f, 0.0f, 0.0f)
Du kannst die geschätzte Lichtquelle für jeden Frame und dann die Komponenten der Umgebungsintensität abrufen
die Sie verwenden möchten.
Java
void update() {
// Get the current frame.
Frame frame = session.update();
// Get the light estimate for the current frame.
LightEstimate lightEstimate = frame.getLightEstimate();
// Get the pixel intensity of AMBIENT_INTENSITY mode.
float pixelIntensity = lightEstimate.getPixelIntensity();
// Read the pixel color correction of AMBIENT_INTENSITY mode into colorCorrection.
lightEstimate.getColorCorrection(colorCorrection, 0);
}
Kotlin
fun update() {
// Get the current frame.
val frame = session.update()
// Get the light estimate for the current frame.
val lightEstimate = frame.lightEstimate
// Get the pixel intensity of AMBIENT_INTENSITY mode.
val pixelIntensity = lightEstimate.pixelIntensity
// Read the pixel color correction of AMBIENT_INTENSITY mode into colorCorrection.
lightEstimate.getColorCorrection(colorCorrection, 0)
}
Mit Environmental HDR APIs für Energieeinsparung sorgen
Energieerhaltung ist das Prinzip, dass von einer Oberfläche reflektiertes Licht
intensiver sein als vor dem Auftritt. Diese Regel ist
wird im physikalischen Rendering erzwungen, wird jedoch bei Legacy-Versionen in der Regel weggelassen.
Rendering-Pipelines, die in Videospielen und mobilen Apps verwendet werden.
Wenn Sie eine physisch basierte Rendering-Pipeline mit Umgebungs-HDR verwenden
sollten Sie lediglich darauf achten,
dass Sie physikalisch basierte Materialien verwenden,
virtuelle Objekte.
Wenn Sie keine physikalische Pipeline verwenden,
Optionen:
Die beste Lösung hierfür ist die Migration zu einer physisch basierten Pipeline.
Sollte dies jedoch nicht möglich sein, können Sie das Problem umgehen, indem Sie
Albedo-Wert eines nicht physisch basierenden Materials durch Energieeinsparung
Faktor. Dadurch wird sichergestellt, dass zumindest das BRDF-Schattierungsmodell
in physikalische Umgebungen umgewandelt werden kann. Jeder BRDF hat einen anderen Faktor:
Bei einer diffusen Reflexion ist es beispielsweise 1/Pi.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eThe Lighting Estimation API in ARCore lets you illuminate virtual objects with realistic lighting based on the real-world environment, enhancing their integration into the scene.\u003c/p\u003e\n"],["\u003cp\u003eBefore using the API, ensure familiarity with fundamental AR concepts and session configuration.\u003c/p\u003e\n"],["\u003cp\u003eChoose between \u003ccode\u003eENVIRONMENTAL_HDR\u003c/code\u003e and \u003ccode\u003eAMBIENT_INTENSITY\u003c/code\u003e modes when configuring lighting estimation, or disable it entirely using \u003ccode\u003eDISABLED\u003c/code\u003e mode.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eENVIRONMENTAL_HDR\u003c/code\u003e mode provides detailed environmental lighting information for advanced rendering, including main directional light, ambient spherical harmonics, and a HDR cubemap.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eAMBIENT_INTENSITY\u003c/code\u003e mode offers a simpler approach by providing pixel intensity and color correction values, suitable for basic lighting adjustments.\u003c/p\u003e\n"]]],["This content explains how to configure and use the Lighting Estimation API in ARCore apps. Key actions include: configuring the session with `ENVIRONMENTAL_HDR`, `AMBIENT_INTENSITY`, or `DISABLED` modes using Java or Kotlin. For `ENVIRONMENTAL_HDR`, retrieve light estimates, including intensity, direction, spherical harmonics, and cubemaps. For `AMBIENT_INTENSITY`, obtain pixel intensity and color correction. Lastly, using physically based material ensures energy conservation in the lighting model.\n"],null,["# Realistically light virtual objects in a scene\n\nLearn how to use [Lighting Estimation](/ar/develop/java/light-estimation)\nin your own apps.\n\nPrerequisites\n-------------\n\nMake sure that you understand [fundamental AR concepts](/ar/develop/fundamentals)\nand how to [configure an ARCore session](/ar/develop/java/session-config) before proceeding.\n\nConfigure the API once per session with the appropriate mode\n------------------------------------------------------------\n\nConfigure Lighting Estimation once per session for the mode you want to use. \n\n### Java\n\n // Configure the session with the Lighting Estimation API in /ar/reference/java/com/google/ar/core/Config.LightEstimationMode#ENVIRONMENTAL_HDR mode.\n Config config = session.getConfig();\n config.setLightEstimationMode(LightEstimationMode.ENVIRONMENTAL_HDR);\n session.configure(config);\n\n // Configure the session with the Lighting Estimation API in /ar/reference/java/com/google/ar/core/Config.LightEstimationMode#AMBIENT_INTENSITY mode.\n Config config = session.getConfig();\n config.setLightEstimationMode(LightEstimationMode.AMBIENT_INTENSITY);\n session.configure(config);\n\n // Configure the session with the Lighting Estimation API turned off.\n Config config = session.getConfig();\n config.setLightEstimationMode(LightEstimationMode.DISABLED);\n session.configure(config);\n\n### Kotlin\n\n // Configure the session with the Lighting Estimation API in /ar/reference/java/com/google/ar/core/Config.LightEstimationMode#ENVIRONMENTAL_HDR mode.\n Config config = session.config\n config.lightEstimationMode = LightEstimationMode.ENVIRONMENTAL_HDR\n session.configure(config)\n\n // Configure the session with the Lighting Estimation API in /ar/reference/java/com/google/ar/core/Config.LightEstimationMode#AMBIENT_INTENSITY mode.\n Config config = session.config\n config.lightEstimationMode = LightEstimationMode.AMBIENT_INTENSITY\n session.configure(config)\n\n // Configure the session with the Lighting Estimation API turned off.\n Config config = session.config\n config.lightEstimationMode = LightEstimationMode.DISABLED\n session.configure(config)\n\nConfigure `ENVIRONMENTAL_HDR` mode\n----------------------------------\n\nTo configure [ENVIRONMENTAL_HDR](/ar/reference/java/com/google/ar/core/Config.LightEstimationMode#ENVIRONMENTAL_HDR) mode, get the light estimate for each frame,\nthen get the environmental HDR lighting components you want to use. \n\n### Java\n\n void update() {\n // Get the current frame.\n Frame frame = session.update();\n\n // Get the light estimate for the current frame.\n LightEstimate lightEstimate = frame.getLightEstimate();\n\n // Get intensity and direction of the main directional light from the current light estimate.\n float[] intensity = lightEstimate.getEnvironmentalHdrMainLightIntensity(); // note - currently only out param.\n float[] direction = lightEstimate.getEnvironmentalHdrMainLightDirection();\n app.setDirectionalLightValues(intensity, direction); // app-specific code.\n\n // Get ambient lighting as spherical harmonics coefficients.\n float[] harmonics = lightEstimate.getEnvironmentalHdrAmbientSphericalHarmonics();\n app.setAmbientSphericalHarmonicsLightValues(harmonics); // app-specific code.\n\n // Get HDR environmental lighting as a cubemap in linear color space.\n Image[] lightmaps = lightEstimate.acquireEnvironmentalHdrCubeMap();\n for (int i = 0; i \u003c lightmaps.length /*should be 6*/; ++i) {\n app.uploadToTexture(i, lightmaps[i]); // app-specific code.\n }\n }\n\n### Kotlin\n\n fun update() {\n // Get the current frame.\n val frame = session.update()\n\n // Get the light estimate for the current frame.\n val lightEstimate = frame.lightEstimate\n\n // Get intensity and direction of the main directional light from the current light estimate.\n val intensity = lightEstimate.environmentalHdrMainLightIntensity\n val direction = lightEstimate.environmentalHdrMainLightDirection\n app.setDirectionalLightValues(intensity, direction) // app-specific code.\n\n // Get ambient lighting as spherical harmonics coefficients.\n val harmonics = lightEstimate.environmentalHdrAmbientSphericalHarmonics\n app.ambientSphericalHarmonicsLightValues = harmonics // app-specific code.\n\n // Get HDR environmental lighting as a cubemap in linear color space.\n val lightMaps = lightEstimate.acquireEnvironmentalHdrCubeMap();\n for ((index, lightMap) in lightMaps.withIndex()) { // 6 maps total.\n app.uploadToTexture(index, lightMap); // app-specific code.\n }\n }\n\nConfigure `AMBIENT_INTENSITY` mode\n----------------------------------\n\nIf you're planning to use the color correction component of [AMBIENT_INTENSITY](/ar/reference/java/com/google/ar/core/Config.LightEstimationMode#AMBIENT_INTENSITY)\nmode, first avoid allocation of color correction on every frame by reusing a shared allocation. \n\n### Java\n\n // Avoid allocation on every frame.\n float[] colorCorrection = new float[4];\n\n### Kotlin\n\n val colorCorrection = floatArrayOf(0.0f, 0.0f, 0.0f, 0.0f)\n\nGet the light estimate for each frame, and then get ambient intensity components\nyou want to use. \n\n### Java\n\n void update() {\n // Get the current frame.\n Frame frame = session.update();\n\n // Get the light estimate for the current frame.\n LightEstimate lightEstimate = frame.getLightEstimate();\n\n // Get the pixel intensity of AMBIENT_INTENSITY mode.\n float pixelIntensity = lightEstimate.getPixelIntensity();\n\n // Read the pixel color correction of AMBIENT_INTENSITY mode into colorCorrection.\n lightEstimate.getColorCorrection(colorCorrection, 0);\n }\n\n### Kotlin\n\n fun update() {\n // Get the current frame.\n val frame = session.update()\n\n // Get the light estimate for the current frame.\n val lightEstimate = frame.lightEstimate\n\n // Get the pixel intensity of AMBIENT_INTENSITY mode.\n val pixelIntensity = lightEstimate.pixelIntensity\n\n // Read the pixel color correction of AMBIENT_INTENSITY mode into colorCorrection.\n lightEstimate.getColorCorrection(colorCorrection, 0)\n }\n\nEnsuring *energy conservation* with Environmental HDR APIs\n----------------------------------------------------------\n\n*Energy conservation* is the principle that light reflected from a surface will\nnever be more intense than it was before it hit the surface. This rule is\nenforced in physically-based rendering, but is usually omitted from legacy\nrendering pipelines used in video games and mobile apps.\n\nIf you're using a physically-based rendering pipeline with Environmental HDR\nlight estimation, simply ensure physically-based materials are used in your\nvirtual objects.\n\nIf you aren't using a physically-based pipeline, however, you have a couple of\noptions:\n\n- The most ideal solution for this is to migrate to a physically-based pipeline.\n\n- If that isn't possible, however, a good workaround is to multiply the\n albedo value from a non-physically-based material by an energy conservation\n factor. This can make sure at least the [BRDF shading model](https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function)\n can be converted into physically-based. Each BRDF has a different factor --\n for example, for a diffuse reflection it is 1/Pi."]]