Định tuyến đội phương tiện: Giao hàng cho xe

Hướng dẫn này minh hoạ cách số lượng xe được cung cấp trong giải pháp Tối ưu hoá tuyến đường có thể thay đổi tuỳ thuộc vào các thông số yêu cầu.

API Tối ưu hoá tuyến đường không chỉ tối ưu hoá thứ tự hoàn tất lô hàng mà còn chỉ định các lô hàng đó cho xe để tối ưu hoá chi phí theo các quy tắc ràng buộc mà bạn quản lý.

Trong ví dụ đầu tiên, số lượng xe khớp với số lượng lô hàng, trong đó tất cả xe đều có cùng thuộc tính chi phí và vị trí. Mỗi xe có chi phí cho mỗi giờ hoạt động và chi phí cho mỗi km đã đi, giúp giảm thiểu thời gian và quãng đường di chuyển. Có thể nhiều xe sẽ được chỉ định lô hàng, nhưng phản hồi mẫu cho thấy giải pháp có chi phí thấp nhất dựa trên các thông số mô hình chi phí đã chỉ định.

Xem yêu cầu mẫu có nhiều xe

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 5.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Xem phản hồi cho yêu cầu có nhiều xe

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:28:22Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:02:30Z",
          "detour": "150s"
        },
        {
          "startTime": "2023-01-14T00:08:55Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:21:21Z",
          "detour": "572s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:05:00Z"
        },
        {
          "travelDuration": "496s",
          "travelDistanceMeters": 1893,
          "waitDuration": "0s",
          "totalDuration": "496s",
          "startTime": "2023-01-14T00:13:05Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:25:31Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "902s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1702s",
        "travelDistanceMeters": 3353
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 33.53,
        "model.vehicles.cost_per_hour": 23.638888888888889
      },
      "routeTotalCost": 57.168888888888887
    },
    {
      "vehicleIndex": 1
    },
    {
      "vehicleIndex": 2
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "902s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1702s",
      "travelDistanceMeters": 3353
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:28:22Z",
    "totalCost": 62.168888888888887,
    "costs": {
      "model.vehicles.cost_per_hour": 23.638888888888889,
      "model.shipments.penalty_cost": 5,
      "model.vehicles.cost_per_kilometer": 33.53
    }
  }
}
    

Trình giải chỉ gán tất cả các lô hàng cho một xe, bỏ qua một lô hàng mặc dù có đủ xe. Lý do là chi phí vận hành xe bổ sung quá cao và không hợp lý, đồng thời không hiệu quả về chi phí đối với bất kỳ xe nào để hoàn tất lô hàng bị bỏ qua do chi phí phạt thấp. Mặc dù có sức chứa xe, một xe có thể thực hiện tất cả các lô hàng được giao theo cách tiết kiệm chi phí nhất. Các phương tiện trong yêu cầu không đặt thuộc tính usedIfRouteIsEmpty (xem tài liệu về thông báo Vehicle (REST, gRPC) để biết thông tin chi tiết), vì vậy, các phương tiện này sẽ không phát sinh chi phí nếu không được sử dụng.

Việc thay đổi các thông số chi phí để ưu tiên các giải pháp ngắn hơn trên toàn cầu thay vì các tuyến xe ngắn hơn riêng lẻ sẽ khiến nhiều xe hơn tham gia giải pháp. Yêu cầu ví dụ tiếp theo sẽ thay thế Vehicle.costPerHour bằng ShipmentModel.globalDurationCostPerHour chung, ưu tiên các giải pháp có tổng thời gian hoạt động ngắn hơn cho bất kỳ xe nào. Chi phí phạt cho shipment[1] cũng tăng lên để giảm khả năng bị bỏ qua.

Xem yêu cầu mẫu sử dụng globalDurationCostPerHour

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "globalDurationCostPerHour": 150.0,
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 75.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Kết quả cho thấy việc sử dụng thông số chi phí chung trên mỗi giờ sẽ dẫn đến việc sử dụng cả ba xe thay vì chỉ một xe.

Xem phản hồi cho yêu cầu bằng cách sử dụng globalDurationCostPerHour

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:20Z",
      "visits": [
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:09:19Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:13:29Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "580s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "980s",
        "travelDistanceMeters": 2036
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.36
      },
      "routeTotalCost": 20.36
    },
    {
      "vehicleIndex": 1,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:18:54Z",
      "visits": [
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-14T00:08:24Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "354s",
          "travelDistanceMeters": 1192,
          "waitDuration": "0s",
          "totalDuration": "354s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "380s",
          "travelDistanceMeters": 1190,
          "waitDuration": "0s",
          "totalDuration": "380s",
          "startTime": "2023-01-14T00:12:34Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "734s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "1134s",
        "travelDistanceMeters": 2382
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 23.82
      },
      "routeTotalCost": 23.82
    },
    {
      "vehicleIndex": 2,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:14Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-14T00:06:25Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-14T00:10:35Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "574s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "974s",
        "travelDistanceMeters": 2071
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.71
      },
      "routeTotalCost": 20.71
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1888s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "3088s",
      "travelDistanceMeters": 6489
    },
    "usedVehicleCount": 3,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:18:54Z",
    "totalCost": 112.14,
    "costs": {
      "model.vehicles.cost_per_kilometer": 64.89,
      "model.global_duration_cost_per_hour": 47.25
    }
  }
}
    

Trong phản hồi này, cả 3 xe đều đang hoạt động (theo metrics.usedVehicleCount) với mỗi xe được chỉ định một lô hàng để hoàn thành. Với vị trí bắt đầu, vị trí kết thúc và costPerKilometer giống hệt nhau, cả ba xe đều có thể thay thế cho nhau một cách hiệu quả, vì vậy, không quan trọng lô hàng nào được chỉ định cho xe nào.

globalDurationCostPerHour khiến trình tối ưu hoá tìm thấy một giải pháp ngắn hơn tổng thể: chênh lệch giữa earliestVehicleStartTimelatestVehicleEndTime chỉ là 18 phút 54 giây so với 28 phút 22 giây trong phản hồi trước. Tuy nhiên, metrics.costs.model.vehicles.cost_per_kilometer đã tăng lên, phản ánh tổng quãng đường đã đi của 3 xe đã qua sử dụng. Đây là một ví dụ minh hoạ cách mô hình chi phí cho phép bạn tối ưu hoá:

  • Tăng chi phí thời gian chung: Tăng mức sử dụng xe để giảm thiểu tổng thời gian hoàn thành, với chi phí là quãng đường và thời gian di chuyển của xe tăng lên.
  • Tăng chi phí thời gian của xe: Giảm mức sử dụng xe và thời gian vận chuyển, nhưng phải trả chi phí cho một giải pháp tổng thể lâu hơn.

Xin lưu ý rằng giá trị globalDurationCostPerHour là 150.0 trong ví dụ này được đặt gấp ba lần costPerHour là 50.0 của từng xe trong ví dụ trước. Giá trị chi phí chung này dự kiến hiệu quả rằng cả ba xe sẽ hoạt động đồng thời, nhưng trong các chế độ cài đặt thực tế, những giả định như vậy có thể không phản ánh thực tế và thực tế có thể ảnh hưởng tiêu cực đến chất lượng kết quả.

Như mô tả trong phần Thông số mô hình chi phí, tất cả thông số chi phí đều được biểu thị bằng cùng một đơn vị không có kích thước nhưng có thể có ý nghĩa rất khác nhau. Thông thường, giá trị tham số mô hình chi phí phải dựa trên thực tế càng nhiều càng tốt, vì các chi phí nhân tạo như trong ví dụ này có thể khiến API tối ưu hoá cho các mục tiêu không khớp với ý định của bạn.