Risolutore di assegnazioni di somma lineare

Questa sezione descrive il risolutore per l'assegnazione della somma lineare, uno specialista per i problemi di assegnazione semplice, che può essere più veloce risolutore MIP o CP-SAT. Tuttavia, i risolutori MIP e CP-SAT possono gestire una gamma più ampia di problemi, quindi nella maggior parte dei casi sono l'opzione migliore.

Matrice dei costi

I costi per i worker e le attività sono indicati nella tabella seguente.

Worker Attività 0 Attività 1 Attività 2 Attività 3
0 90 76 75 70
1 35 85 55 65
2 125 95 90 105
3 45 110 95 115

Le sezioni seguenti presentano un programma Python che risolve un compito di un problema usando il risolutore dell'assegnazione di somma lineare.

Importa le librerie

Di seguito è mostrato il codice che importa la libreria richiesta.

Python

import numpy as np

from ortools.graph.python import linear_sum_assignment

C++

#include "ortools/graph/assignment.h"

#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.LinearSumAssignment;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Graph;

Definisci i dati

Il seguente codice crea i dati per il programma.

Python

costs = np.array(
    [
        [90, 76, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115],
    ]
)

# Let's transform this into 3 parallel vectors (start_nodes, end_nodes,
# arc_costs)
end_nodes_unraveled, start_nodes_unraveled = np.meshgrid(
    np.arange(costs.shape[1]), np.arange(costs.shape[0])
)
start_nodes = start_nodes_unraveled.ravel()
end_nodes = end_nodes_unraveled.ravel()
arc_costs = costs.ravel()

C++

const int num_workers = 4;
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = 4;
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70}},    // Worker 0
    {{35, 85, 55, 65}},    // Worker 1
    {{125, 95, 90, 105}},  // Worker 2
    {{45, 110, 95, 115}},  // Worker 3
}};

Java

final int[][] costs = {
    {90, 76, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 105},
    {45, 110, 95, 115},
};
final int numWorkers = 4;
final int numTasks = 4;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70 },
    { 35, 85, 55, 65 },
    { 125, 95, 90, 105 },
    { 45, 110, 95, 115 },
};
int numWorkers = 4;
int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int numTasks = 4;
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

L'array è la matrice dei costi, dove la voce i, j corrisponde al costo del worker i per eseguire l'attività j. Ci sono quattro worker, corrispondenti alle righe e quattro attività, corrispondenti alle colonne.

Crea il risolutore

Il programma utilizza un risolutore di assegnazione lineare, risolutore specializzato per il problema dell'assegnazione.

Il codice riportato di seguito crea il risolutore.

Python

assignment = linear_sum_assignment.SimpleLinearSumAssignment()

C++

SimpleLinearSumAssignment assignment;

Java

LinearSumAssignment assignment = new LinearSumAssignment();

C#

LinearSumAssignment assignment = new LinearSumAssignment();

Aggiungi i vincoli

Il codice seguente aggiunge i costi al risolutore eseguendo il loop sui worker attività di machine learning.

Python

assignment.add_arcs_with_cost(start_nodes, end_nodes, arc_costs)

C++

for (int w : all_workers) {
  for (int t : all_tasks) {
    if (costs[w][t]) {
      assignment.AddArcWithCost(w, t, costs[w][t]);
    }
  }
}

Java

// Add each arc.
for (int w : allWorkers) {
  for (int t : allTasks) {
    if (costs[w][t] != 0) {
      assignment.addArcWithCost(w, t, costs[w][t]);
    }
  }
}

C#

// Add each arc.
foreach (int w in allWorkers)
{
    foreach (int t in allTasks)
    {
        if (costs[w, t] != 0)
        {
            assignment.AddArcWithCost(w, t, costs[w, t]);
        }
    }
}

Richiama il risolutore

Il seguente codice richiama il risolutore.

Python

status = assignment.solve()

C++

SimpleLinearSumAssignment::Status status = assignment.Solve();

Java

LinearSumAssignment.Status status = assignment.solve();

C#

LinearSumAssignment.Status status = assignment.Solve();

Visualizza i risultati

Il codice seguente mostra la soluzione.

Python

if status == assignment.OPTIMAL:
    print(f"Total cost = {assignment.optimal_cost()}\n")
    for i in range(0, assignment.num_nodes()):
        print(
            f"Worker {i} assigned to task {assignment.right_mate(i)}."
            + f"  Cost = {assignment.assignment_cost(i)}"
        )
elif status == assignment.INFEASIBLE:
    print("No assignment is possible.")
elif status == assignment.POSSIBLE_OVERFLOW:
    print("Some input costs are too large and may cause an integer overflow.")

C++

if (status == SimpleLinearSumAssignment::OPTIMAL) {
  LOG(INFO) << "Total cost: " << assignment.OptimalCost();
  for (int worker : all_workers) {
    LOG(INFO) << "Worker " << std::to_string(worker) << " assigned to task "
              << std::to_string(assignment.RightMate(worker)) << ". Cost: "
              << std::to_string(assignment.AssignmentCost(worker)) << ".";
  }
} else {
  LOG(INFO) << "Solving the linear assignment problem failed.";
}

Java

if (status == LinearSumAssignment.Status.OPTIMAL) {
  System.out.println("Total cost: " + assignment.getOptimalCost());
  for (int worker : allWorkers) {
    System.out.println("Worker " + worker + " assigned to task "
        + assignment.getRightMate(worker) + ". Cost: " + assignment.getAssignmentCost(worker));
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == LinearSumAssignment.Status.OPTIMAL)
{
    Console.WriteLine($"Total cost: {assignment.OptimalCost()}.");
    foreach (int worker in allWorkers)
    {
        Console.WriteLine($"Worker {worker} assigned to task {assignment.RightMate(worker)}. " +
                          $"Cost: {assignment.AssignmentCost(worker)}.");
    }
}
else
{
    Console.WriteLine("Solving the linear assignment problem failed.");
    Console.WriteLine($"Solver status: {status}.");
}

L'output seguente mostra l'assegnazione ottimale dei worker alle attività.

Total cost = 265
Worker 0 assigned to task 3.  Cost = 70
Worker 1 assigned to task 2.  Cost = 55
Worker 2 assigned to task 1.  Cost = 95
Worker 3 assigned to task 0.  Cost = 45
Time = 0.000147 seconds

Il grafico seguente mostra la soluzione con i bordi tratteggiati del grafico. La i numeri accanto ai bordi tratteggiati sono i loro costi. Il tempo di attesa totale di questo compito è la somma dei costi per il tratteggiati, ossia 265.

Grafico del flusso di assegnazione della somma lineare

In teoria, un insieme di bordi in un grafo bipartito che corrisponde a ogni nodo su quella a sinistra con un solo nodo a destra viene chiamata corrispondenza perfetta.

L'intero programma

Ecco l'intero programma.

Python

"""Solve assignment problem using linear assignment solver."""
import numpy as np

from ortools.graph.python import linear_sum_assignment


def main():
    """Linear Sum Assignment example."""
    assignment = linear_sum_assignment.SimpleLinearSumAssignment()

    costs = np.array(
        [
            [90, 76, 75, 70],
            [35, 85, 55, 65],
            [125, 95, 90, 105],
            [45, 110, 95, 115],
        ]
    )

    # Let's transform this into 3 parallel vectors (start_nodes, end_nodes,
    # arc_costs)
    end_nodes_unraveled, start_nodes_unraveled = np.meshgrid(
        np.arange(costs.shape[1]), np.arange(costs.shape[0])
    )
    start_nodes = start_nodes_unraveled.ravel()
    end_nodes = end_nodes_unraveled.ravel()
    arc_costs = costs.ravel()

    assignment.add_arcs_with_cost(start_nodes, end_nodes, arc_costs)

    status = assignment.solve()

    if status == assignment.OPTIMAL:
        print(f"Total cost = {assignment.optimal_cost()}\n")
        for i in range(0, assignment.num_nodes()):
            print(
                f"Worker {i} assigned to task {assignment.right_mate(i)}."
                + f"  Cost = {assignment.assignment_cost(i)}"
            )
    elif status == assignment.INFEASIBLE:
        print("No assignment is possible.")
    elif status == assignment.POSSIBLE_OVERFLOW:
        print("Some input costs are too large and may cause an integer overflow.")


if __name__ == "__main__":
    main()

C++

#include "ortools/graph/assignment.h"

#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

namespace operations_research {
// Simple Linear Sum Assignment Problem (LSAP).
void AssignmentLinearSumAssignment() {
  SimpleLinearSumAssignment assignment;

  const int num_workers = 4;
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = 4;
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70}},    // Worker 0
      {{35, 85, 55, 65}},    // Worker 1
      {{125, 95, 90, 105}},  // Worker 2
      {{45, 110, 95, 115}},  // Worker 3
  }};

  for (int w : all_workers) {
    for (int t : all_tasks) {
      if (costs[w][t]) {
        assignment.AddArcWithCost(w, t, costs[w][t]);
      }
    }
  }

  SimpleLinearSumAssignment::Status status = assignment.Solve();

  if (status == SimpleLinearSumAssignment::OPTIMAL) {
    LOG(INFO) << "Total cost: " << assignment.OptimalCost();
    for (int worker : all_workers) {
      LOG(INFO) << "Worker " << std::to_string(worker) << " assigned to task "
                << std::to_string(assignment.RightMate(worker)) << ". Cost: "
                << std::to_string(assignment.AssignmentCost(worker)) << ".";
    }
  } else {
    LOG(INFO) << "Solving the linear assignment problem failed.";
  }
}

}  // namespace operations_research

int main() {
  operations_research::AssignmentLinearSumAssignment();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.LinearSumAssignment;
import java.util.stream.IntStream;

/** Minimal Linear Sum Assignment problem. */
public class AssignmentLinearSumAssignment {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    LinearSumAssignment assignment = new LinearSumAssignment();

    final int[][] costs = {
        {90, 76, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 105},
        {45, 110, 95, 115},
    };
    final int numWorkers = 4;
    final int numTasks = 4;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Add each arc.
    for (int w : allWorkers) {
      for (int t : allTasks) {
        if (costs[w][t] != 0) {
          assignment.addArcWithCost(w, t, costs[w][t]);
        }
      }
    }

    LinearSumAssignment.Status status = assignment.solve();

    if (status == LinearSumAssignment.Status.OPTIMAL) {
      System.out.println("Total cost: " + assignment.getOptimalCost());
      for (int worker : allWorkers) {
        System.out.println("Worker " + worker + " assigned to task "
            + assignment.getRightMate(worker) + ". Cost: " + assignment.getAssignmentCost(worker));
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private AssignmentLinearSumAssignment() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Graph;

public class AssignmentLinearSumAssignment
{
    static void Main()
    {
        LinearSumAssignment assignment = new LinearSumAssignment();

        int[,] costs = {
            { 90, 76, 75, 70 },
            { 35, 85, 55, 65 },
            { 125, 95, 90, 105 },
            { 45, 110, 95, 115 },
        };
        int numWorkers = 4;
        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int numTasks = 4;
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Add each arc.
        foreach (int w in allWorkers)
        {
            foreach (int t in allTasks)
            {
                if (costs[w, t] != 0)
                {
                    assignment.AddArcWithCost(w, t, costs[w, t]);
                }
            }
        }

        LinearSumAssignment.Status status = assignment.Solve();

        if (status == LinearSumAssignment.Status.OPTIMAL)
        {
            Console.WriteLine($"Total cost: {assignment.OptimalCost()}.");
            foreach (int worker in allWorkers)
            {
                Console.WriteLine($"Worker {worker} assigned to task {assignment.RightMate(worker)}. " +
                                  $"Cost: {assignment.AssignmentCost(worker)}.");
            }
        }
        else
        {
            Console.WriteLine("Solving the linear assignment problem failed.");
            Console.WriteLine($"Solver status: {status}.");
        }
    }
}

Soluzione quando i lavoratori non possono eseguire tutte le attività

Nell'esempio precedente, abbiamo dato per scontato che tutti i worker possano eseguire tutte le attività. Ma non è sempre così: un worker potrebbe non essere in grado di eseguire una o più attività per vari motivi. Tuttavia, è facile modificare il programma qui sopra questo.

Ad esempio, supponiamo che il worker 0 non sia in grado di eseguire l'attività 3. Per modificare programma per tenerne conto, apporta le seguenti modifiche:

  1. Modifica la voce 0, 3 della matrice dei costi nella stringa 'NA'. (Qualsiasi stringa andrà bene).
    cost = [[90, 76, 75, 'NA'],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115]]
  2. Nella sezione del codice che assegna i costi al risolutore, aggiungi la riga if cost[worker][task] != 'NA':, come mostrato di seguito.
    for worker in range(0, rows):
    for task in range(0, cols):
      if cost[worker][task] != 'NA':
        assignment.AddArcWithCost(worker, task, cost[worker][task])
    La riga aggiunta impedisce qualsiasi bordo il cui ingresso nella matrice dei costi è 'NA' dall'aggiunta al risolutore.

Dopo aver apportato queste modifiche ed eseguito il codice modificato, vedrai quanto segue: :

Total cost = 276
Worker 0 assigned to task 1.  Cost = 76
Worker 1 assigned to task 3.  Cost = 65
Worker 2 assigned to task 2.  Cost = 90
Worker 3 assigned to task 0.  Cost = 45

Nota che ora il costo totale è superiore a quello del problema originale. Questo non sorprende, poiché nel problema originale la soluzione ottimale il worker 0 assegnato all'attività 3, nel problema modificato, viene non consentito.

Per vedere cosa succede se più worker non sono in grado di eseguire le attività, puoi sostituire più voci della matrice dei costi con 'NA', per indicare altri lavoratori che non possono eseguire determinate attività:

cost = [[90, 76, 'NA', 'NA'],
        [35, 85, 'NA', 'NA'],
        [125, 95, 'NA','NA'],
        [45, 110, 95, 115]]

Se questa volta esegui il programma, ottieni un risultato negativo:

No assignment is possible.

Ciò significa che non c'è modo di assegnare lavoratori alle attività in modo che ogni esegue un'attività diversa. Puoi capirne il motivo osservando il grafico per il problema (in cui non sono presenti bordi corrispondenti ai valori di 'NA' nella matrice dei costi).

grafico di flusso della soluzione di assegnazione della somma lineare

Poiché i nodi dei tre worker 0, 1 e 2 sono connessi solo nodi per le attività 0 e 1, non è possibile assegnare attività distinte worker.

Il teorema del matrimonio

Esiste un risultato noto della teoria dei grafi, chiamato Il teorema del matrimonio, che ci dice esattamente quando puoi assegnare ciascun nodo a sinistra a un nodo a destra, in un grafo bipartito come quello mostrato sopra. Un compito del genere è chiamata corrispondenza perfetta. In poche parole, il teorema dice che è possibile se non esiste un sottoinsieme di nodi a sinistra (come quello nell'esempio precedente ) i cui lati portano a un insieme più piccolo di nodi a destra.

Più precisamente, il teorema afferma che un grafo bipartito ha una corrispondenza perfetta solo se per qualsiasi sottoinsieme S dei nodi a sinistra del grafico, insieme di nodi sul lato destro del grafico, collegati da un bordo a un che il nodo in S sia grande almeno quanto S.