تقدم أدوات OR أداتين رئيسيتين لحل مسائل برمجة الأعداد الصحيحة:
- MPSolver، كما هو موضح في قسم سابق.
- أداة حلّ CP-SAT التي سنوضّحها بعد ذلك.
يشير هذا المصطلح إلى مثال يحل مسألة برمجة عدد صحيح باستخدام كل من CP-SAT. أداة حل المشكلات وبرنامج تضمين MPSolver، راجع حلّ مسألة في المهام الدراسية:
تعرض الأقسام التالية أمثلة توضّح كيفية استخدام أداة حلّ CP-SAT.
مثال: إيجاد حل ملائم
لنبدأ بمثال بسيط لمشكلة:
- ثلاثة متغيرات، x وy وz، ويمكن أن تأخذ كل منها القيم: 0 أو 1 أو 2.
- قيد واحد:
x != y
سنبدأ بعرض كيفية استخدام أداة حل CP-SAT لإيجاد طريقة بكل اللغات المعتمدة. في حين أن إيجاد حل ممكن هو بسيطة في هذه الحالة، ولكن في مشكلات برمجة القيود الأكثر تعقيدًا، يمكن من الصعب جدًا تحديد ما إذا كان هناك حل عملي أم لا.
للحصول على مثال عن إيجاد حل مثالي لمشكلة في العمود الفقري، راجع حل مشاكل التحسين:
استيراد المكتبات
يستورد الرمز التالي المكتبة المطلوبة.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar;
#C
using System; using Google.OrTools.Sat;
تعريف النموذج
يوضح الرمز التالي نموذج CP-SAT.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
#C
CpModel model = new CpModel();
إنشاء المتغيّرات
تُنشئ التعليمة البرمجية التالية متغيرات المشكلة.
Python
num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z")
C++
const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z");
#C
int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z");
تنشئ أداة الحلّ ثلاثة متغيرات، x وy وz، ويمكن لكل منها اتخاذ القيم 0 أو 1 أو 2.
إنشاء القيد
ينشئ التعليمة البرمجية التالية القيد x != y
.
Python
model.add(x != y)
C++
cp_model.AddNotEqual(x, y);
Java
model.addDifferent(x, y);
#C
model.Add(x != y);
طلب أداة حلّ المشكلة
تستدعي التعليمة البرمجية التالية أداة الحل.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
#C
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
قيم عرض CP-SAT
تعرض أداة حل CP-SAT إحدى قيم الحالة المعروضة في الجدول أدناه. ضِمن
في هذا المثال، القيمة التي يتم عرضها هي OPTIMAL
.
الحالة | الوصف |
---|---|
OPTIMAL |
تم العثور على حل مثالي ممكن. |
FEASIBLE |
تم العثور على حل عملي، لكننا لا نعرف ما إذا كان هو الأمثل. |
INFEASIBLE |
ثبت أن المشكلة غير قابلة للتنفيذ. |
MODEL_INVALID |
لم يجتَز CpModelProto المحدَّد خطوة التحقّق. يمكنك الحصول على
حدث خطأ مفصّل من خلال طلب الرقم ValidateCpModel(model_proto) . |
UNKNOWN |
حالة النموذج غير معروفة بسبب عدم العثور على حل (أو أن المشكلة لم تثبت عدم وجودها) قبل أن يتسبب شيء ما في جعل أداة الحل التوقف، مثل الحد الزمني أو حد للذاكرة أو حد مخصص يضبطه المستخدم. |
يتم تعريفها في cp_model.proto.
عرض الحلّ الأول
تعرض التعليمة البرمجية التالية أول حل ممكن تم العثور عليه بواسطة أداة الحلّ.
يُرجى العلم أنّ الرمز يتحقّق مما إذا كانت قيمة status
هي FEASIBLE
أو
OPTIMAL
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
#C
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
تشغيل البرنامج
يتم عرض البرامج الكاملة في القسم التالي. عند تشغيل برنامج، يعرض الحل الأول الذي عثرت عليه أداة الحلّ:
x = 1 y = 0 z = 0
إكمال البرامج
يتم عرض البرامج الكاملة أدناه.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def simple_sat_program(): """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Creates the constraints. model.add(x != y) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") simple_sat_program()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SimpleSatProgram() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SimpleSatProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; /** Minimal CP-SAT example to showcase calling the solver. */ public final class SimpleSatProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } } private SimpleSatProgram() {} }
#C
using System; using Google.OrTools.Sat; public class SimpleSatProgram { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Creates the constraints. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } } }
العثور على جميع الحلول
بعد ذلك، سنوضح كيفية تعديل البرنامج أعلاه للعثور على جميع الحلول الممكنة.
وتتمثل الإضافة الرئيسية إلى البرنامج في طابعة حلول معاودة الاتصال التي تمريره إلى أداة الحلّ، والذي يعرض كل حل كما هو موجود.
إضافة طابعة الحل
تُنشئ التعليمة البرمجية التالية طابعة الحل.
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
#C
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
طلب أداة حلّ المشكلة
يستدعي الرمز التالي أداة الحل، ويمرر طابعة الحل إليها.
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
#C
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
تشغيل البرنامج
يمكنك الاطّلاع على البرنامج الكامل في القسم التالي. عند تشغيل البرنامج، يعرض جميع الحلول الـ 18 الممكنة:
x=1 y=0 z=0 x=2 y=0 z=0 x=2 y=1 z=0 x=2 y=1 z=1 x=2 y=1 z=2 x=2 y=0 z=2 x=2 y=0 z=1 x=1 y=0 z=1 x=0 y=1 z=1 x=0 y=1 z=2 x=0 y=2 z=2 x=1 y=2 z=2 x=1 y=2 z=1 x=1 y=2 z=0 x=0 y=2 z=0 x=0 y=1 z=0 x=0 y=2 z=1 x=1 y=0 z=2 Status = FEASIBLE
إكمال البرامج
يتم عرض البرامج الكاملة أدناه.
Python
from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def search_for_all_solutions_sample_sat(): """Showcases calling the solver to search for all solutions.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Create the constraints. model.add(x != y) # Create a solver and solve. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) print(f"Status = {solver.status_name(status)}") print(f"Number of solutions found: {solution_printer.solution_count}") search_for_all_solutions_sample_sat()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SearchAllSolutionsSampleSat() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SearchAllSolutionsSampleSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; /** Code sample that solves a model and displays all solutions. */ public class SearchForAllSolutionsSampleSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); System.out.println(cb.getSolutionCount() + " solutions found."); } }
#C
using System; using Google.OrTools.Sat; public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } public class SearchForAllSolutionsSampleSat { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Adds a different constraint. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine($"Number of solutions found: {cb.SolutionCount()}"); } }