Assegnazione come problema relativo al flusso di costo minimo

Puoi usare il risolutore del flusso di costo minimo per risolvere casi speciali problema di assegnazione.

Infatti, un flusso di costo minimo spesso può restituire una soluzione più velocemente del MIP o risolutore CP-SAT. Tuttavia, MIP e CP-SAT possono risolvere una classe di problemi più ampia rispetto di costo minimo, perciò nella maggior parte dei casi le scelte migliori sono MIP o CP-SAT.

Le seguenti sezioni presentano programmi Python che risolvono di assegnazione dei problemi utilizzando il risolutore del flusso di costo minimo:

Esempio di assegnazione lineare

Questa sezione mostra come risolvere l'esempio, descritto nella sezione Linear Assignment Solver (Risolutore di assegnazioni lineari), come un problema di flusso di costo.

Importa le librerie

Il codice seguente importa la libreria richiesta.

Python

from ortools.graph.python import min_cost_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

C#

using System;
using Google.OrTools.Graph;

Dichiara il risolutore

Il seguente codice crea il risolutore del flusso di costo minimo.

Python

# Instantiate a SimpleMinCostFlow solver.
smcf = min_cost_flow.SimpleMinCostFlow()

C++

// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;

Java

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

C#

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

crea i dati

Il diagramma di flusso del problema è costituito da un grafo bipartito per il costo (vedi il panoramica delle assegnazioni per un un esempio diverso), con l'aggiunta di un'origine e di un sink.

Grafico del flusso dei costi di rete

I dati contengono i seguenti quattro array, corrispondenti ai nodi di inizio, nodi finali, capacità e costi del problema. La lunghezza di ogni array è il numero di archi nel grafico.

Python

# Define the directed graph for the flow.
start_nodes = (
    [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8]
)
end_nodes = (
    [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9]
)
capacities = (
    [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1]
)
costs = (
    [0, 0, 0, 0]
    + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115]
    + [0, 0, 0, 0]
)

source = 0
sink = 9
tasks = 4
supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

C++

// Define four parallel arrays: sources, destinations, capacities,
// and unit costs between each pair. For instance, the arc from node 0
// to node 1 has a capacity of 15.
const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
                                          3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
                                        5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const std::vector<int64_t> unit_costs = {0,  0,   0,  0,   90,  76, 75, 70,
                                         35, 85,  55, 65,  125, 95, 90, 105,
                                         45, 110, 95, 115, 0,   0,  0,  0};

const int64_t source = 0;
const int64_t sink = 9;
const int64_t tasks = 4;
// Define an array of supplies at each node.
const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

Java

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes =
    new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
int[] endNodes =
    new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
int[] capacities =
    new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
int[] unitCosts = new int[] {
    0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0};

int source = 0;
int sink = 9;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

C#

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 };
int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 };
int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int[] unitCosts = { 0,   0,  0,  0,   90, 76,  75, 70,  35, 85, 55, 65,
                    125, 95, 90, 105, 45, 110, 95, 115, 0,  0,  0,  0 };

int source = 0;
int sink = 9;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

Per chiarire come sono impostati i dati, ogni array è diviso in tre matrici secondarie:

  • Il primo array corrisponde agli archi che escono dall'origine.
  • Il secondo array corrisponde agli archi tra worker e attività. Per costs, questo è solo matrice dei costi (utilizzato dal risolutore dell'assegnazione lineare), appiattito in un vettore.
  • Il terzo array corrisponde agli archi che portano nel sink.

I dati includono anche il vettore supplies, che fornisce l'offerta a ogni nodo.

Come un problema di flusso di costo minimo rappresenta un problema di assegnazione

In che modo il problema relativo al flusso di costo minimo riportato sopra rappresenta un problema di assegnazione? Per prima cosa, poiché la capacità di ogni arco è 1, l'alimentazione di 4 alla sorgente forza dei quattro archi che portano i worker ad avere un flusso pari a 1.

Quindi, la condizione di flusso uguale a flusso forza il flusso in uscita da ciascun worker su 1. Se possibile, il risolutore indirizza quel flusso attraverso il costo minimo dell'arco principale che precede ogni worker. Tuttavia, il risolutore non può indirizzare i flussi due worker diversi a una singola attività. In tal caso, verrebbe generata una combinazione flusso di 2 in quell'attività, che non è stato possibile inviare attraverso il singolo arco con capacità 1 dall'attività al sink. Ciò significa che il risolutore può assegnare un'attività solo a un singolo worker, richiesta dal problema di assegnazione.

Infine, la condizione di flusso in uguale a flusso obbliga ogni attività ad avere una un flusso di 1, in modo che ogni attività venga eseguita da un worker.

Creare il grafico e i vincoli

Il seguente codice crea il grafico e i vincoli.

Python

# Add each arc.
for i in range(len(start_nodes)):
    smcf.add_arc_with_capacity_and_unit_cost(
        start_nodes[i], end_nodes[i], capacities[i], costs[i]
    )
# Add node supplies.
for i in range(len(supplies)):
    smcf.set_node_supply(i, supplies[i])

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
      start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
  if (arc != i) LOG(FATAL) << "Internal error";
}

// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
  min_cost_flow.SetNodeSupply(i, supplies[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = minCostFlow.addArcWithCapacityAndUnitCost(
      startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
  minCostFlow.setNodeSupply(i, supplies[i]);
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc =
        minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
    minCostFlow.SetNodeSupply(i, supplies[i]);
}

Richiama il risolutore

Il seguente codice richiama il risolutore e visualizza la soluzione.

Python

# Find the minimum cost flow between node 0 and node 10.
status = smcf.solve()

C++

// Find the min cost flow.
int status = min_cost_flow.Solve();

Java

// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();

C#

// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();

La soluzione consiste negli archi tra i worker e le attività a cui viene assegnato flusso di 1 da parte del risolutore. Gli archi connessi all'origine o al sink non fanno parte la soluzione.)

Il programma controlla ogni arco per vedere se ha flusso 1 e, in questo caso, stampa il Tail (nodo iniziale) e Head (nodo finale) dell'arco, che corrispondono a un un worker e un'attività nel compito.

Output del programma

Python

if status == smcf.OPTIMAL:
    print("Total cost = ", smcf.optimal_cost())
    print()
    for arc in range(smcf.num_arcs()):
        # Can ignore arcs leading out of source or into sink.
        if smcf.tail(arc) != source and smcf.head(arc) != sink:

            # Arcs in the solution have a flow value of 1. Their start and end nodes
            # give an assignment of worker to task.
            if smcf.flow(arc) > 0:
                print(
                    "Worker %d assigned to task %d.  Cost = %d"
                    % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                )
else:
    print("There was an issue with the min cost flow input.")
    print(f"Status: {status}")

C++

if (status == MinCostFlow::OPTIMAL) {
  LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
  LOG(INFO) << "";
  for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
    // Can ignore arcs leading out of source or into sink.
    if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end
      // nodes give an assignment of worker to task.
      if (min_cost_flow.Flow(i) > 0) {
        LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                  << " assigned to task " << min_cost_flow.Head(i)
                  << " Cost: " << min_cost_flow.UnitCost(i);
      }
    }
  }
} else {
  LOG(INFO) << "Solving the min cost flow problem failed.";
  LOG(INFO) << "Solver status: " << status;
}

Java

if (status == MinCostFlow.Status.OPTIMAL) {
  System.out.println("Total cost: " + minCostFlow.getOptimalCost());
  System.out.println();
  for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
    // Can ignore arcs leading out of source or into sink.
    if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end nodes
      // give an assignment of worker to task.
      if (minCostFlow.getFlow(i) > 0) {
        System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
            + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
      }
    }
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == MinCostFlow.Status.OPTIMAL)
{
    Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
    Console.WriteLine("");
    for (int i = 0; i < minCostFlow.NumArcs(); ++i)
    {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink)
        {
            // Arcs in the solution have a flow value of 1. Their start and end nodes
            // give an assignment of worker to task.
            if (minCostFlow.Flow(i) > 0)
            {
                Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                  " Cost: " + minCostFlow.UnitCost(i));
            }
        }
    }
}
else
{
    Console.WriteLine("Solving the min cost flow problem failed.");
    Console.WriteLine("Solver status: " + status);
}

Ecco l'output del programma.

Total cost = 265

Worker 1 assigned to task 8.  Cost = 70
Worker 2 assigned to task 7.  Cost = 55
Worker 3 assigned to task 6.  Cost = 95
Worker 4 assigned to task 5.  Cost = 45

Time = 0.000245 seconds

Il risultato è lo stesso di quello risolutore di assegnazioni lineari (tranne i diversi numerazione dei worker e dei costi). Il risolutore di assegnazioni lineari è leggermente più veloce rispetto al flusso di costo minimo: 0,000147 secondi rispetto a 0,000458 secondi.

L'intero programma

Di seguito è mostrato l'intero programma.

Python

"""Linear assignment example."""
from ortools.graph.python import min_cost_flow


def main():
    """Solving an Assignment Problem with MinCostFlow."""
    # Instantiate a SimpleMinCostFlow solver.
    smcf = min_cost_flow.SimpleMinCostFlow()

    # Define the directed graph for the flow.
    start_nodes = (
        [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8]
    )
    end_nodes = (
        [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9]
    )
    capacities = (
        [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1]
    )
    costs = (
        [0, 0, 0, 0]
        + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115]
        + [0, 0, 0, 0]
    )

    source = 0
    sink = 9
    tasks = 4
    supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

    # Add each arc.
    for i in range(len(start_nodes)):
        smcf.add_arc_with_capacity_and_unit_cost(
            start_nodes[i], end_nodes[i], capacities[i], costs[i]
        )
    # Add node supplies.
    for i in range(len(supplies)):
        smcf.set_node_supply(i, supplies[i])

    # Find the minimum cost flow between node 0 and node 10.
    status = smcf.solve()

    if status == smcf.OPTIMAL:
        print("Total cost = ", smcf.optimal_cost())
        print()
        for arc in range(smcf.num_arcs()):
            # Can ignore arcs leading out of source or into sink.
            if smcf.tail(arc) != source and smcf.head(arc) != sink:

                # Arcs in the solution have a flow value of 1. Their start and end nodes
                # give an assignment of worker to task.
                if smcf.flow(arc) > 0:
                    print(
                        "Worker %d assigned to task %d.  Cost = %d"
                        % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                    )
    else:
        print("There was an issue with the min cost flow input.")
        print(f"Status: {status}")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

namespace operations_research {
// MinCostFlow simple interface example.
void AssignmentMinFlow() {
  // Instantiate a SimpleMinCostFlow solver.
  SimpleMinCostFlow min_cost_flow;

  // Define four parallel arrays: sources, destinations, capacities,
  // and unit costs between each pair. For instance, the arc from node 0
  // to node 1 has a capacity of 15.
  const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
                                            3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
  const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
                                          5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
  const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  const std::vector<int64_t> unit_costs = {0,  0,   0,  0,   90,  76, 75, 70,
                                           35, 85,  55, 65,  125, 95, 90, 105,
                                           45, 110, 95, 115, 0,   0,  0,  0};

  const int64_t source = 0;
  const int64_t sink = 9;
  const int64_t tasks = 4;
  // Define an array of supplies at each node.
  const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
        start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
    if (arc != i) LOG(FATAL) << "Internal error";
  }

  // Add node supplies.
  for (int i = 0; i < supplies.size(); ++i) {
    min_cost_flow.SetNodeSupply(i, supplies[i]);
  }

  // Find the min cost flow.
  int status = min_cost_flow.Solve();

  if (status == MinCostFlow::OPTIMAL) {
    LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
    LOG(INFO) << "";
    for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
      // Can ignore arcs leading out of source or into sink.
      if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) {
        // Arcs in the solution have a flow value of 1. Their start and end
        // nodes give an assignment of worker to task.
        if (min_cost_flow.Flow(i) > 0) {
          LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                    << " assigned to task " << min_cost_flow.Head(i)
                    << " Cost: " << min_cost_flow.UnitCost(i);
        }
      }
    }
  } else {
    LOG(INFO) << "Solving the min cost flow problem failed.";
    LOG(INFO) << "Solver status: " << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::AssignmentMinFlow();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

/** Minimal Assignment Min Flow. */
public class AssignmentMinFlow {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMinCostFlow solver.
    MinCostFlow minCostFlow = new MinCostFlow();

    // Define four parallel arrays: sources, destinations, capacities, and unit costs
    // between each pair.
    int[] startNodes =
        new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
    int[] endNodes =
        new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
    int[] capacities =
        new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    int[] unitCosts = new int[] {
        0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0};

    int source = 0;
    int sink = 9;
    int tasks = 4;
    // Define an array of supplies at each node.
    int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = minCostFlow.addArcWithCapacityAndUnitCost(
          startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Add node supplies.
    for (int i = 0; i < supplies.length; ++i) {
      minCostFlow.setNodeSupply(i, supplies[i]);
    }

    // Find the min cost flow.
    MinCostFlowBase.Status status = minCostFlow.solve();

    if (status == MinCostFlow.Status.OPTIMAL) {
      System.out.println("Total cost: " + minCostFlow.getOptimalCost());
      System.out.println();
      for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) {
          // Arcs in the solution have a flow value of 1. Their start and end nodes
          // give an assignment of worker to task.
          if (minCostFlow.getFlow(i) > 0) {
            System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
                + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
          }
        }
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private AssignmentMinFlow() {}
}

C#

using System;
using Google.OrTools.Graph;

public class AssignmentMinFlow
{
    static void Main()
    {
        // Instantiate a SimpleMinCostFlow solver.
        MinCostFlow minCostFlow = new MinCostFlow();

        // Define four parallel arrays: sources, destinations, capacities, and unit costs
        // between each pair.
        int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 };
        int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 };
        int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
        int[] unitCosts = { 0,   0,  0,  0,   90, 76,  75, 70,  35, 85, 55, 65,
                            125, 95, 90, 105, 45, 110, 95, 115, 0,  0,  0,  0 };

        int source = 0;
        int sink = 9;
        int tasks = 4;
        // Define an array of supplies at each node.
        int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc =
                minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Add node supplies.
        for (int i = 0; i < supplies.Length; ++i)
        {
            minCostFlow.SetNodeSupply(i, supplies[i]);
        }

        // Find the min cost flow.
        MinCostFlow.Status status = minCostFlow.Solve();

        if (status == MinCostFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
            Console.WriteLine("");
            for (int i = 0; i < minCostFlow.NumArcs(); ++i)
            {
                // Can ignore arcs leading out of source or into sink.
                if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink)
                {
                    // Arcs in the solution have a flow value of 1. Their start and end nodes
                    // give an assignment of worker to task.
                    if (minCostFlow.Flow(i) > 0)
                    {
                        Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                          " Cost: " + minCostFlow.UnitCost(i));
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("Solving the min cost flow problem failed.");
            Console.WriteLine("Solver status: " + status);
        }
    }
}

Assegnazione ai team di lavoratori

Questa sezione presenta un problema più generale relativo ai compiti. In questo problema, sei sono divisi in due team. Il problema è assegnare quattro attività in modo che il carico di lavoro sia equamente bilanciato tra i team, ogni team esegue due attività.

Per una soluzione MIP a questo problema, vedi Compiti con i team di lavoratori.

Le seguenti sezioni descrivono un programma che risolve il problema utilizzando il risolutore del flusso di costo.

Importa le librerie

Il codice seguente importa la libreria richiesta.

Python

from ortools.graph.python import min_cost_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

C#

using System;
using Google.OrTools.Graph;

Dichiara il risolutore

Il seguente codice crea il risolutore del flusso di costo minimo.

Python

smcf = min_cost_flow.SimpleMinCostFlow()

C++

// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;

Java

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

C#

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

crea i dati

Il seguente codice crea i dati per il programma.

Python

# Define the directed graph for the flow.
team_a = [1, 3, 5]
team_b = [2, 4, 6]

start_nodes = (
    # fmt: off
  [0, 0]
  + [11, 11, 11]
  + [12, 12, 12]
  + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
  + [7, 8, 9, 10]
    # fmt: on
)
end_nodes = (
    # fmt: off
  [11, 12]
  + team_a
  + team_b
  + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10]
  + [13, 13, 13, 13]
    # fmt: on
)
capacities = (
    # fmt: off
  [2, 2]
  + [1, 1, 1]
  + [1, 1, 1]
  + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  + [1, 1, 1, 1]
    # fmt: on
)
costs = (
    # fmt: off
  [0, 0]
  + [0, 0, 0]
  + [0, 0, 0]
  + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95]
  + [0, 0, 0, 0]
    # fmt: on
)

source = 0
sink = 13
tasks = 4
# Define an array of supplies at each node.
supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

C++

// Define the directed graph for the flow.
const std::vector<int64_t> team_A = {1, 3, 5};
const std::vector<int64_t> team_B = {2, 4, 6};

const std::vector<int64_t> start_nodes = {
    0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
    3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
const std::vector<int64_t> end_nodes = {
    11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
    9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13};
const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const std::vector<int64_t> unit_costs = {
    0,  0,   0,  0,  0,   0,  0,   0,   90, 76,  75, 70,
    35, 85,  55, 65, 125, 95, 90,  105, 45, 110, 95, 115,
    60, 105, 80, 75, 45,  65, 110, 95,  0,  0,   0,  0};

const int64_t source = 0;
const int64_t sink = 13;
const int64_t tasks = 4;
// Define an array of supplies at each node.
const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0,
                                       0,     0, 0, 0, 0, 0, -tasks};

Java

// Define the directed graph for the flow.
// int[] teamA = new int[] {1, 3, 5};
// int[] teamB = new int[] {2, 4, 6};

int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
    4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7,
    8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13};
int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95,
    90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0};

int source = 0;
int sink = 13;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

C#

// Define the directed graph for the flow.
int[] teamA = { 1, 3, 5 };
int[] teamB = { 2, 4, 6 };

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
                     3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10 };
int[] endNodes = { 11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
                   9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13 };
int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int[] unitCosts = { 0,  0,   0,  0,   0,  0,   0,  0,   90, 76, 75, 70, 35,  85, 55, 65, 125, 95,
                    90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0,  0,  0,   0 };

int source = 0;
int sink = 13;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

I worker corrispondono ai nodi 1 - 6. Il team A è composto dai worker 1, 3 e 5, mentre il team B è composto dai worker 2, 4 e 6. Le attività sono numerate da 7 a 10.

Ci sono due nuovi nodi, 11 e 12, tra l'origine e i worker. Il nodo 11 è ai nodi per il team A, mentre il nodo 12 è connesso ai nodi il team B, con archi di capacità pari a 1. Il grafico seguente mostra solo i nodi e gli archi dall'origine ai worker.

Grafico del flusso dei costi di rete

La chiave per bilanciare il carico di lavoro è che l'origine 0 è connessa ai nodi 11 e 12 per archi di capacità 2. Ciò significa che i nodi 11 e 12 (e quindi i team A e B) possono avere un flusso massimo di 2. Di conseguenza, ogni team può eseguire al massimo due attività.

crea i vincoli

Python

# Add each arc.
for i in range(0, len(start_nodes)):
    smcf.add_arc_with_capacity_and_unit_cost(
        start_nodes[i], end_nodes[i], capacities[i], costs[i]
    )

# Add node supplies.
for i in range(0, len(supplies)):
    smcf.set_node_supply(i, supplies[i])

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
      start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
  if (arc != i) LOG(FATAL) << "Internal error";
}

// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
  min_cost_flow.SetNodeSupply(i, supplies[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = minCostFlow.addArcWithCapacityAndUnitCost(
      startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
  minCostFlow.setNodeSupply(i, supplies[i]);
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc =
        minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
    minCostFlow.SetNodeSupply(i, supplies[i]);
}

Richiama il risolutore

Python

# Find the minimum cost flow between node 0 and node 10.
status = smcf.solve()

C++

// Find the min cost flow.
int status = min_cost_flow.Solve();

Java

// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();

C#

// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();

Output del programma

Python

if status == smcf.OPTIMAL:
    print("Total cost = ", smcf.optimal_cost())
    print()
    for arc in range(smcf.num_arcs()):
        # Can ignore arcs leading out of source or intermediate, or into sink.
        if (
            smcf.tail(arc) != source
            and smcf.tail(arc) != 11
            and smcf.tail(arc) != 12
            and smcf.head(arc) != sink
        ):

            # Arcs in the solution will have a flow value of 1.
            # There start and end nodes give an assignment of worker to task.
            if smcf.flow(arc) > 0:
                print(
                    "Worker %d assigned to task %d.  Cost = %d"
                    % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                )
else:
    print("There was an issue with the min cost flow input.")
    print(f"Status: {status}")

C++

if (status == MinCostFlow::OPTIMAL) {
  LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
  LOG(INFO) << "";
  for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
    // Can ignore arcs leading out of source or intermediate nodes, or into
    // sink.
    if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 &&
        min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end
      // nodes give an assignment of worker to task.
      if (min_cost_flow.Flow(i) > 0) {
        LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                  << " assigned to task " << min_cost_flow.Head(i)
                  << " Cost: " << min_cost_flow.UnitCost(i);
      }
    }
  }
} else {
  LOG(INFO) << "Solving the min cost flow problem failed.";
  LOG(INFO) << "Solver status: " << status;
}

Java

if (status == MinCostFlow.Status.OPTIMAL) {
  System.out.println("Total cost: " + minCostFlow.getOptimalCost());
  System.out.println();
  for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
    // Can ignore arcs leading out of source or intermediate nodes, or into sink.
    if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11
        && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end nodes
      // give an assignment of worker to task.
      if (minCostFlow.getFlow(i) > 0) {
        System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
            + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
      }
    }
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == MinCostFlow.Status.OPTIMAL)
{
    Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
    Console.WriteLine("");
    for (int i = 0; i < minCostFlow.NumArcs(); ++i)
    {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 &&
            minCostFlow.Head(i) != sink)
        {
            // Arcs in the solution have a flow value of 1. Their start and end nodes
            // give an assignment of worker to task.
            if (minCostFlow.Flow(i) > 0)
            {
                Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                  " Cost: " + minCostFlow.UnitCost(i));
            }
        }
    }
}
else
{
    Console.WriteLine("Solving the min cost flow problem failed.");
    Console.WriteLine("Solver status: " + status);
}

Di seguito è mostrato l'output del programma.

Total cost = 250

Worker 1 assigned to task 9.  Cost =  75
Worker 2 assigned to task 7.  Cost =  35
Worker 5 assigned to task 10.  Cost =  75
Worker 6 assigned to task 8.  Cost =  65

Time = 0.00031 seconds

Al team A vengono assegnati i compiti 9 e 10, mentre al team B vengono assegnati i compiti 7 e 8.

Tieni presente che il risolutore del flusso di costo minimo è più veloce per questo problema rispetto Risolutore MIP, che richiede circa 0,006 secondi.

L'intero programma

Di seguito è mostrato l'intero programma.

Python

"""Assignment with teams of workers."""
from ortools.graph.python import min_cost_flow


def main():
    """Solving an Assignment with teams of worker."""
    smcf = min_cost_flow.SimpleMinCostFlow()

    # Define the directed graph for the flow.
    team_a = [1, 3, 5]
    team_b = [2, 4, 6]

    start_nodes = (
        # fmt: off
      [0, 0]
      + [11, 11, 11]
      + [12, 12, 12]
      + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
      + [7, 8, 9, 10]
        # fmt: on
    )
    end_nodes = (
        # fmt: off
      [11, 12]
      + team_a
      + team_b
      + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10]
      + [13, 13, 13, 13]
        # fmt: on
    )
    capacities = (
        # fmt: off
      [2, 2]
      + [1, 1, 1]
      + [1, 1, 1]
      + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
      + [1, 1, 1, 1]
        # fmt: on
    )
    costs = (
        # fmt: off
      [0, 0]
      + [0, 0, 0]
      + [0, 0, 0]
      + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95]
      + [0, 0, 0, 0]
        # fmt: on
    )

    source = 0
    sink = 13
    tasks = 4
    # Define an array of supplies at each node.
    supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

    # Add each arc.
    for i in range(0, len(start_nodes)):
        smcf.add_arc_with_capacity_and_unit_cost(
            start_nodes[i], end_nodes[i], capacities[i], costs[i]
        )

    # Add node supplies.
    for i in range(0, len(supplies)):
        smcf.set_node_supply(i, supplies[i])

    # Find the minimum cost flow between node 0 and node 10.
    status = smcf.solve()

    if status == smcf.OPTIMAL:
        print("Total cost = ", smcf.optimal_cost())
        print()
        for arc in range(smcf.num_arcs()):
            # Can ignore arcs leading out of source or intermediate, or into sink.
            if (
                smcf.tail(arc) != source
                and smcf.tail(arc) != 11
                and smcf.tail(arc) != 12
                and smcf.head(arc) != sink
            ):

                # Arcs in the solution will have a flow value of 1.
                # There start and end nodes give an assignment of worker to task.
                if smcf.flow(arc) > 0:
                    print(
                        "Worker %d assigned to task %d.  Cost = %d"
                        % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                    )
    else:
        print("There was an issue with the min cost flow input.")
        print(f"Status: {status}")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

namespace operations_research {
// MinCostFlow simple interface example.
void BalanceMinFlow() {
  // Instantiate a SimpleMinCostFlow solver.
  SimpleMinCostFlow min_cost_flow;

  // Define the directed graph for the flow.
  const std::vector<int64_t> team_A = {1, 3, 5};
  const std::vector<int64_t> team_B = {2, 4, 6};

  const std::vector<int64_t> start_nodes = {
      0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
      3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
  const std::vector<int64_t> end_nodes = {
      11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
      9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13};
  const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  const std::vector<int64_t> unit_costs = {
      0,  0,   0,  0,  0,   0,  0,   0,   90, 76,  75, 70,
      35, 85,  55, 65, 125, 95, 90,  105, 45, 110, 95, 115,
      60, 105, 80, 75, 45,  65, 110, 95,  0,  0,   0,  0};

  const int64_t source = 0;
  const int64_t sink = 13;
  const int64_t tasks = 4;
  // Define an array of supplies at each node.
  const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0,
                                         0,     0, 0, 0, 0, 0, -tasks};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
        start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
    if (arc != i) LOG(FATAL) << "Internal error";
  }

  // Add node supplies.
  for (int i = 0; i < supplies.size(); ++i) {
    min_cost_flow.SetNodeSupply(i, supplies[i]);
  }

  // Find the min cost flow.
  int status = min_cost_flow.Solve();

  if (status == MinCostFlow::OPTIMAL) {
    LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
    LOG(INFO) << "";
    for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
      // Can ignore arcs leading out of source or intermediate nodes, or into
      // sink.
      if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 &&
          min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) {
        // Arcs in the solution have a flow value of 1. Their start and end
        // nodes give an assignment of worker to task.
        if (min_cost_flow.Flow(i) > 0) {
          LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                    << " assigned to task " << min_cost_flow.Head(i)
                    << " Cost: " << min_cost_flow.UnitCost(i);
        }
      }
    }
  } else {
    LOG(INFO) << "Solving the min cost flow problem failed.";
    LOG(INFO) << "Solver status: " << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::BalanceMinFlow();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

/** Minimal Assignment Min Flow. */
public class BalanceMinFlow {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMinCostFlow solver.
    MinCostFlow minCostFlow = new MinCostFlow();

    // Define the directed graph for the flow.
    // int[] teamA = new int[] {1, 3, 5};
    // int[] teamB = new int[] {2, 4, 6};

    int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
        4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
    int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7,
        8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13};
    int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95,
        90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0};

    int source = 0;
    int sink = 13;
    int tasks = 4;
    // Define an array of supplies at each node.
    int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = minCostFlow.addArcWithCapacityAndUnitCost(
          startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Add node supplies.
    for (int i = 0; i < supplies.length; ++i) {
      minCostFlow.setNodeSupply(i, supplies[i]);
    }

    // Find the min cost flow.
    MinCostFlowBase.Status status = minCostFlow.solve();

    if (status == MinCostFlow.Status.OPTIMAL) {
      System.out.println("Total cost: " + minCostFlow.getOptimalCost());
      System.out.println();
      for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
        // Can ignore arcs leading out of source or intermediate nodes, or into sink.
        if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11
            && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) {
          // Arcs in the solution have a flow value of 1. Their start and end nodes
          // give an assignment of worker to task.
          if (minCostFlow.getFlow(i) > 0) {
            System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
                + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
          }
        }
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private BalanceMinFlow() {}
}

C#

using System;
using Google.OrTools.Graph;

public class BalanceMinFlow
{
    static void Main()
    {
        // Instantiate a SimpleMinCostFlow solver.
        MinCostFlow minCostFlow = new MinCostFlow();

        // Define the directed graph for the flow.
        int[] teamA = { 1, 3, 5 };
        int[] teamB = { 2, 4, 6 };

        // Define four parallel arrays: sources, destinations, capacities, and unit costs
        // between each pair.
        int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
                             3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10 };
        int[] endNodes = { 11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
                           9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13 };
        int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
        int[] unitCosts = { 0,  0,   0,  0,   0,  0,   0,  0,   90, 76, 75, 70, 35,  85, 55, 65, 125, 95,
                            90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0,  0,  0,   0 };

        int source = 0;
        int sink = 13;
        int tasks = 4;
        // Define an array of supplies at each node.
        int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc =
                minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Add node supplies.
        for (int i = 0; i < supplies.Length; ++i)
        {
            minCostFlow.SetNodeSupply(i, supplies[i]);
        }

        // Find the min cost flow.
        MinCostFlow.Status status = minCostFlow.Solve();

        if (status == MinCostFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
            Console.WriteLine("");
            for (int i = 0; i < minCostFlow.NumArcs(); ++i)
            {
                // Can ignore arcs leading out of source or into sink.
                if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 &&
                    minCostFlow.Head(i) != sink)
                {
                    // Arcs in the solution have a flow value of 1. Their start and end nodes
                    // give an assignment of worker to task.
                    if (minCostFlow.Flow(i) > 0)
                    {
                        Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                          " Cost: " + minCostFlow.UnitCost(i));
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("Solving the min cost flow problem failed.");
            Console.WriteLine("Solver status: " + status);
        }
    }
}