در این بخش، نحوه حل یک مشکل کلاسیک به نام رژیم غذایی استیگلر را نشان میدهیم که به نام جورج استیگلر، برنده جایزه نوبل اقتصاد، که روشی ارزان برای برآورده کردن نیازهای تغذیهای اولیه با مجموعهای از غذاها را محاسبه کرد، نامگذاری شده است. او این را به عنوان یک تمرین ریاضی مطرح کرد، نه به عنوان توصیه های غذایی، اگرچه مفهوم محاسبه تغذیه بهینه اخیراً مد شده است.
رژیم غذایی استیگلر رعایت این حداقل ها را الزامی می کرد:
لیست مواد مغذی
ماده مغذی | میزان مصرف توصیه شده روزانه |
---|---|
کالری | 3000 کالری |
پروتئین | 70 گرم |
کلسیم | .8 گرم |
آهن | 12 میلی گرم |
ویتامین A | 5000 واحد بین المللی |
تیامین (ویتامین B1) | 1.8 میلی گرم |
ریبوفلاوین (ویتامین B2) | 2.7 میلی گرم |
نیاسین | 18 میلی گرم |
اسید اسکوربیک (ویتامین C) | 75 میلی گرم |
مجموعه غذاهایی که استیگلر ارزیابی کرد بازتابی از زمان بود (1944). دادههای تغذیهای زیر به ازای هر دلار است، نه به ازای واحد، بنابراین هدف این است که تعیین کنیم چه مقدار دلار برای هر ماده غذایی هزینه کنیم.
لیست کالاها
کالا | واحد | قیمت 1939 (سنت) | کالری (کیلو کالری) | پروتئین (گرم) | کلسیم (گرم) | آهن (میلی گرم) | ویتامین A (KIU) | تیامین (میلی گرم) | ریبوفلاوین (میلی گرم) | نیاسین (میلی گرم) | اسید اسکوربیک (میلی گرم) |
---|---|---|---|---|---|---|---|---|---|---|---|
آرد گندم (غنی شده) | 10 پوند | 36 | 44.7 | 1411 | 2 | 365 | 0 | 55.4 | 33.3 | 441 | 0 |
ماکارونی | 1 پوند | 14.1 | 11.6 | 418 | 0.7 | 54 | 0 | 3.2 | 1.9 | 68 | 0 |
غلات گندم (غنی شده) | 28 اونس | 24.2 | 11.8 | 377 | 14.4 | 175 | 0 | 14.4 | 8.8 | 114 | 0 |
ذرت فلکس | 8 اونس | 7.1 | 11.4 | 252 | 0.1 | 56 | 0 | 13.5 | 2.3 | 68 | 0 |
کنجاله ذرت | 1 پوند | 4.6 | 36.0 | 897 | 1.7 | 99 | 30.9 | 17.4 | 7.9 | 106 | 0 |
هومینی گریتز | 24 اونس | 8.5 | 28.6 | 680 | 0.8 | 80 | 0 | 10.6 | 1.6 | 110 | 0 |
برنج | 1 پوند | 7.5 | 21.2 | 460 | 0.6 | 41 | 0 | 2 | 4.8 | 60 | 0 |
جو دوسر نورد شده | 1 پوند | 7.1 | 25.3 | 907 | 5.1 | 341 | 0 | 37.1 | 8.9 | 64 | 0 |
نان سفید (غنی شده) | 1 پوند | 7.9 | 15.0 | 488 | 2.5 | 115 | 0 | 13.8 | 8.5 | 126 | 0 |
نان سبوس دار | 1 پوند | 9.1 | 12.2 | 484 | 2.7 | 125 | 0 | 13.9 | 6.4 | 160 | 0 |
نان چاودار | 1 پوند | 9.1 | 12.4 | 439 | 1.1 | 82 | 0 | 9.9 | 3 | 66 | 0 |
کیک پوندی | 1 پوند | 24.8 | 8.0 | 130 | 0.4 | 31 | 18.9 | 2.8 | 3 | 17 | 0 |
کراکر سودا | 1 پوند | 15.1 | 12.5 | 288 | 0.5 | 50 | 0 | 0 | 0 | 0 | 0 |
شیر | 1 کوانت | 11 | 6.1 | 310 | 10.5 | 18 | 16.8 | 4 | 16 | 7 | 177 |
شیر تبخیر شده (کنسرو) | 14.5 اونس | 6.7 | 8.4 | 422 | 15.1 | 9 | 26 | 3 | 23.5 | 11 | 60 |
کره | 1 پوند | 30.8 | 10.8 | 9 | 0.2 | 3 | 44.2 | 0 | 0.2 | 2 | 0 |
اولئومارگارین | 1 پوند | 16.1 | 20.6 | 17 | 0.6 | 6 | 55.8 | 0.2 | 0 | 0 | 0 |
تخم مرغ | 1 دوز. | 32.6 | 2.9 | 238 | 1.0 | 52 | 18.6 | 2.8 | 6.5 | 1 | 0 |
پنیر (چدار) | 1 پوند | 24.2 | 7.4 | 448 | 16.4 | 19 | 28.1 | 0.8 | 10.3 | 4 | 0 |
کرم | 1/2 امتیاز | 14.1 | 3.5 | 49 | 1.7 | 3 | 16.9 | 0.6 | 2.5 | 0 | 17 |
کره بادام زمینی | 1 پوند | 17.9 | 15.7 | 661 | 1.0 | 48 | 0 | 9.6 | 8.1 | 471 | 0 |
سس مایونز | 1/2 امتیاز | 16.7 | 8.6 | 18 | 0.2 | 8 | 2.7 | 0.4 | 0.5 | 0 | 0 |
کریسکو | 1 پوند | 20.3 | 20.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
گوشت خوک | 1 پوند | 9.8 | 41.7 | 0 | 0 | 0 | 0.2 | 0 | 0.5 | 5 | 0 |
استیک گوزن | 1 پوند | 39.6 | 2.9 | 166 | 0.1 | 34 | 0.2 | 2.1 | 2.9 | 69 | 0 |
استیک گرد | 1 پوند | 36.4 | 2.2 | 214 | 0.1 | 32 | 0.4 | 2.5 | 2.4 | 87 | 0 |
کباب دنده ای | 1 پوند | 29.2 | 3.4 | 213 | 0.1 | 33 | 0 | 0 | 2 | 0 | 0 |
چاک روست | 1 پوند | 22.6 | 3.6 | 309 | 0.2 | 46 | 0.4 | 1 | 4 | 120 | 0 |
بشقاب | 1 پوند | 14.6 | 8.5 | 404 | 0.2 | 62 | 0 | 0.9 | 0 | 0 | 0 |
جگر (گوشت گاو) | 1 پوند | 26.8 | 2.2 | 333 | 0.2 | 139 | 169.2 | 6.4 | 50.8 | 316 | 525 |
ساق بره | 1 پوند | 27.6 | 3.1 | 245 | 0.1 | 20 | 0 | 2.8 | 3.9 | 86 | 0 |
گوشت بره (دنده) | 1 پوند | 36.6 | 3.3 | 140 | 0.1 | 15 | 0 | 1.7 | 2.7 | 54 | 0 |
تکه های گوشت خوک | 1 پوند | 30.7 | 3.5 | 196 | 0.2 | 30 | 0 | 17.4 | 2.7 | 60 | 0 |
کباب کمر خوک | 1 پوند | 24.2 | 4.4 | 249 | 0.3 | 37 | 0 | 18.2 | 3.6 | 79 | 0 |
بیکن | 1 پوند | 25.6 | 10.4 | 152 | 0.2 | 23 | 0 | 1.8 | 1.8 | 71 | 0 |
ژامبون دودی | 1 پوند | 27.4 | 6.7 | 212 | 0.2 | 31 | 0 | 9.9 | 3.3 | 50 | 0 |
گوشت خوک نمک | 1 پوند | 16 | 18.8 | 164 | 0.1 | 26 | 0 | 1.4 | 1.8 | 0 | 0 |
مرغ سوخاری | 1 پوند | 30.3 | 1.8 | 184 | 0.1 | 30 | 0.1 | 0.9 | 1.8 | 68 | 46 |
کتلت گوساله | 1 پوند | 42.3 | 1.7 | 156 | 0.1 | 24 | 0 | 1.4 | 2.4 | 57 | 0 |
ماهی سالمون، صورتی (قوطی) | 16 اونس | 13 | 5.8 | 705 | 6.8 | 45 | 3.5 | 1 | 4.9 | 209 | 0 |
سیب | 1 پوند | 4.4 | 5.8 | 27 | 0.5 | 36 | 7.3 | 3.6 | 2.7 | 5 | 544 |
موز | 1 پوند | 6.1 | 4.9 | 60 | 0.4 | 30 | 17.4 | 2.5 | 3.5 | 28 | 498 |
لیمو | 1 دوز. | 26 | 1.0 | 21 | 0.5 | 14 | 0 | 0.5 | 0 | 4 | 952 |
پرتقال | 1 دوز. | 30.9 | 2.2 | 40 | 1.1 | 18 | 11.1 | 3.6 | 1.3 | 10 | 1998 |
لوبیا سبز | 1 پوند | 7.1 | 2.4 | 138 | 3.7 | 80 | 69 | 4.3 | 5.8 | 37 | 862 |
کلم | 1 پوند | 3.7 | 2.6 | 125 | 4.0 | 36 | 7.2 | 9 | 4.5 | 26 | 5369 |
هویج | 1 دسته | 4.7 | 2.7 | 73 | 2.8 | 43 | 188.5 | 6.1 | 4.3 | 89 | 608 |
کرفس | 1 ساقه | 7.3 | 0.9 | 51 | 3.0 | 23 | 0.9 | 1.4 | 1.4 | 9 | 313 |
کاهو | 1 سر | 8.2 | 0.4 | 27 | 1.1 | 22 | 112.4 | 1.8 | 3.4 | 11 | 449 |
پیاز | 1 پوند | 3.6 | 5.8 | 166 | 3.8 | 59 | 16.6 | 4.7 | 5.9 | 21 | 1184 |
سیب زمینی | 15 پوند | 34 | 14.3 | 336 | 1.8 | 118 | 6.7 | 29.4 | 7.1 | 198 | 2522 |
اسفناج | 1 پوند | 8.1 | 1.1 | 106 | 0 | 138 | 918.4 | 5.7 | 13.8 | 33 | 2755 |
سیب زمینی شیرین | 1 پوند | 5.1 | 9.6 | 138 | 2.7 | 54 | 290.7 | 8.4 | 5.4 | 83 | 1912 |
هلو (قوطی) | شماره 2 1/2 | 16.8 | 3.7 | 20 | 0.4 | 10 | 21.5 | 0.5 | 1 | 31 | 196 |
گلابی (قوطی) | شماره 2 1/2 | 20.4 | 3.0 | 8 | 0.3 | 8 | 0.8 | 0.8 | 0.8 | 5 | 81 |
آناناس (قوطی) | شماره 2 1/2 | 21.3 | 2.4 | 16 | 0.4 | 8 | 2 | 2.8 | 0.8 | 7 | 399 |
مارچوبه (قوطی) | شماره 2 | 27.7 | 0.4 | 33 | 0.3 | 12 | 16.3 | 1.4 | 2.1 | 17 | 272 |
لوبیا سبز (قوی) | شماره 2 | 10 | 1.0 | 54 | 2 | 65 | 53.9 | 1.6 | 4.3 | 32 | 431 |
گوشت خوک و لوبیا (کنسرو) | 16 اونس | 7.1 | 7.5 | 364 | 4 | 134 | 3.5 | 8.3 | 7.7 | 56 | 0 |
ذرت (قوطی) | شماره 2 | 10.4 | 5.2 | 136 | 0.2 | 16 | 12 | 1.6 | 2.7 | 42 | 218 |
نخود فرنگی (کنسرو) | شماره 2 | 13.8 | 2.3 | 136 | 0.6 | 45 | 34.9 | 4.9 | 2.5 | 37 | 370 |
گوجه فرنگی (قوی) | شماره 2 | 8.6 | 1.3 | 63 | 0.7 | 38 | 53.2 | 3.4 | 2.5 | 36 | 1253 |
سوپ گوجه فرنگی (کنسرو) | 10 1/2 اونس. | 7.6 | 1.6 | 71 | 0.6 | 43 | 57.9 | 3.5 | 2.4 | 67 | 862 |
هلو، خشک شده | 1 پوند | 15.7 | 8.5 | 87 | 1.7 | 173 | 86.8 | 1.2 | 4.3 | 55 | 57 |
آلو خشک شده | 1 پوند | 9 | 12.8 | 99 | 2.5 | 154 | 85.7 | 3.9 | 4.3 | 65 | 257 |
کشمش، خشک شده | 15 اونس | 9.4 | 13.5 | 104 | 2.5 | 136 | 4.5 | 6.3 | 1.4 | 24 | 136 |
نخود، خشک شده | 1 پوند | 7.9 | 20.0 | 1367 | 4.2 | 345 | 2.9 | 28.7 | 18.4 | 162 | 0 |
لوبیا لیما، خشک شده | 1 پوند | 8.9 | 17.4 | 1055 | 3.7 | 459 | 5.1 | 26.9 | 38.2 | 93 | 0 |
لوبیا دریایی، خشک شده | 1 پوند | 5.9 | 26.9 | 1691 | 11.4 | 792 | 0 | 38.4 | 24.6 | 217 | 0 |
قهوه | 1 پوند | 22.4 | 0 | 0 | 0 | 0 | 0 | 4 | 5.1 | 50 | 0 |
چای | 1/4 پوند | 17.4 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3 | 42 | 0 |
کاکائو | 8 اونس | 8.6 | 8.7 | 237 | 3 | 72 | 0 | 2 | 11.9 | 40 | 0 |
شکلات | 8 اونس | 16.2 | 8.0 | 77 | 1.3 | 39 | 0 | 0.9 | 3.4 | 14 | 0 |
شکر | 10 پوند | 51.7 | 34.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
شربت ذرت | 24 اونس | 13.7 | 14.7 | 0 | 0.5 | 74 | 0 | 0 | 0 | 5 | 0 |
ملاس | 18 اونس | 13.6 | 9.0 | 0 | 10.3 | 244 | 0 | 1.9 | 7.5 | 146 | 0 |
کنسرو توت فرنگی | 1 پوند | 20.5 | 6.4 | 11 | 0.4 | 7 | 0.2 | 0.2 | 0.4 | 3 | 0 |
از آنجایی که همه مواد مغذی بر اساس قیمت عادی شده اند، هدف ما به سادگی به حداقل رساندن مجموع غذاها است.
در سال 1944، استیگلر بهترین پاسخی را که می توانست محاسبه کرد، با ناراحتی خاطرنشان کرد:
... به نظر نمی رسد هیچ روش مستقیمی برای یافتن مینیمم تابع خطی مشروط به شرایط خطی وجود داشته باشد.
او در سال 1939 رژیم غذایی با هزینه 39.93 دلار در سال پیدا کرد. در سال 1947، جک لادرمن از روش سیمپلکس (در آن زمان، اختراع اخیر!) برای تعیین راه حل بهینه استفاده کرد. برای رسیدن به پاسخ، 120 روز کارمند 9 کارمند روی میز ماشین حساب طول کشید.
حل با استفاده از حل کننده خطی
بخش های زیر برنامه ای را ارائه می دهد که مشکل رژیم غذایی استیگلر را حل می کند.
لفاف حل خطی را وارد کنید
همانطور که در زیر نشان داده شده است ، بستهبندی حلکننده خطی OR-Tools، یک رابط برای حلکننده خطی [GLOP](/optimization/mip/glop0) وارد کنید.
پایتون
from ortools.linear_solver import pywraplp
C++
#include <array> #include <memory> #include <string> #include <utility> // std::pair #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h"
جاوا
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; import java.util.ArrayList; import java.util.List;
سی شارپ
using System; using System.Collections.Generic; using Google.OrTools.LinearSolver;
داده ها برای مشکل
کد زیر یک آرایه nutrients
برای حداقل مورد نیاز مواد مغذی و یک data
آرایه برای جدول داده های تغذیه ای در هر محلول ایجاد می کند.
پایتون
# Nutrient minimums. nutrients = [ ["Calories (kcal)", 3], ["Protein (g)", 70], ["Calcium (g)", 0.8], ["Iron (mg)", 12], ["Vitamin A (KIU)", 5], ["Vitamin B1 (mg)", 1.8], ["Vitamin B2 (mg)", 2.7], ["Niacin (mg)", 18], ["Vitamin C (mg)", 75], ] # Commodity, Unit, 1939 price (cents), Calories (kcal), Protein (g), # Calcium (g), Iron (mg), Vitamin A (KIU), Vitamin B1 (mg), Vitamin B2 (mg), # Niacin (mg), Vitamin C (mg) data = [ # fmt: off ['Wheat Flour (Enriched)', '10 lb.', 36, 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0], ['Macaroni', '1 lb.', 14.1, 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0], ['Wheat Cereal (Enriched)', '28 oz.', 24.2, 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0], ['Corn Flakes', '8 oz.', 7.1, 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0], ['Corn Meal', '1 lb.', 4.6, 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0], ['Hominy Grits', '24 oz.', 8.5, 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0], ['Rice', '1 lb.', 7.5, 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0], ['Rolled Oats', '1 lb.', 7.1, 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0], ['White Bread (Enriched)', '1 lb.', 7.9, 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0], ['Whole Wheat Bread', '1 lb.', 9.1, 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0], ['Rye Bread', '1 lb.', 9.1, 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0], ['Pound Cake', '1 lb.', 24.8, 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0], ['Soda Crackers', '1 lb.', 15.1, 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0], ['Milk', '1 qt.', 11, 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177], ['Evaporated Milk (can)', '14.5 oz.', 6.7, 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60], ['Butter', '1 lb.', 30.8, 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0], ['Oleomargarine', '1 lb.', 16.1, 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0], ['Eggs', '1 doz.', 32.6, 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0], ['Cheese (Cheddar)', '1 lb.', 24.2, 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0], ['Cream', '1/2 pt.', 14.1, 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17], ['Peanut Butter', '1 lb.', 17.9, 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0], ['Mayonnaise', '1/2 pt.', 16.7, 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0], ['Crisco', '1 lb.', 20.3, 20.1, 0, 0, 0, 0, 0, 0, 0, 0], ['Lard', '1 lb.', 9.8, 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0], ['Sirloin Steak', '1 lb.', 39.6, 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0], ['Round Steak', '1 lb.', 36.4, 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0], ['Rib Roast', '1 lb.', 29.2, 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0], ['Chuck Roast', '1 lb.', 22.6, 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0], ['Plate', '1 lb.', 14.6, 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0], ['Liver (Beef)', '1 lb.', 26.8, 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525], ['Leg of Lamb', '1 lb.', 27.6, 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0], ['Lamb Chops (Rib)', '1 lb.', 36.6, 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0], ['Pork Chops', '1 lb.', 30.7, 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0], ['Pork Loin Roast', '1 lb.', 24.2, 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0], ['Bacon', '1 lb.', 25.6, 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0], ['Ham, smoked', '1 lb.', 27.4, 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0], ['Salt Pork', '1 lb.', 16, 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0], ['Roasting Chicken', '1 lb.', 30.3, 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46], ['Veal Cutlets', '1 lb.', 42.3, 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0], ['Salmon, Pink (can)', '16 oz.', 13, 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0], ['Apples', '1 lb.', 4.4, 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544], ['Bananas', '1 lb.', 6.1, 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498], ['Lemons', '1 doz.', 26, 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952], ['Oranges', '1 doz.', 30.9, 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998], ['Green Beans', '1 lb.', 7.1, 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862], ['Cabbage', '1 lb.', 3.7, 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369], ['Carrots', '1 bunch', 4.7, 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608], ['Celery', '1 stalk', 7.3, 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313], ['Lettuce', '1 head', 8.2, 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449], ['Onions', '1 lb.', 3.6, 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184], ['Potatoes', '15 lb.', 34, 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522], ['Spinach', '1 lb.', 8.1, 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755], ['Sweet Potatoes', '1 lb.', 5.1, 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912], ['Peaches (can)', 'No. 2 1/2', 16.8, 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196], ['Pears (can)', 'No. 2 1/2', 20.4, 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81], ['Pineapple (can)', 'No. 2 1/2', 21.3, 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399], ['Asparagus (can)', 'No. 2', 27.7, 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272], ['Green Beans (can)', 'No. 2', 10, 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431], ['Pork and Beans (can)', '16 oz.', 7.1, 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0], ['Corn (can)', 'No. 2', 10.4, 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218], ['Peas (can)', 'No. 2', 13.8, 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370], ['Tomatoes (can)', 'No. 2', 8.6, 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253], ['Tomato Soup (can)', '10 1/2 oz.', 7.6, 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862], ['Peaches, Dried', '1 lb.', 15.7, 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57], ['Prunes, Dried', '1 lb.', 9, 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257], ['Raisins, Dried', '15 oz.', 9.4, 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136], ['Peas, Dried', '1 lb.', 7.9, 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0], ['Lima Beans, Dried', '1 lb.', 8.9, 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0], ['Navy Beans, Dried', '1 lb.', 5.9, 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0], ['Coffee', '1 lb.', 22.4, 0, 0, 0, 0, 0, 4, 5.1, 50, 0], ['Tea', '1/4 lb.', 17.4, 0, 0, 0, 0, 0, 0, 2.3, 42, 0], ['Cocoa', '8 oz.', 8.6, 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0], ['Chocolate', '8 oz.', 16.2, 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0], ['Sugar', '10 lb.', 51.7, 34.9, 0, 0, 0, 0, 0, 0, 0, 0], ['Corn Syrup', '24 oz.', 13.7, 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0], ['Molasses', '18 oz.', 13.6, 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0], ['Strawberry Preserves', '1 lb.', 20.5, 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0], # fmt: on ]
C++
// Nutrient minimums. const std::vector<std::pair<std::string, double>> nutrients = { {"Calories (kcal)", 3.0}, {"Protein (g)", 70.0}, {"Calcium (g)", 0.8}, {"Iron (mg)", 12.0}, {"Vitamin A (kIU)", 5.0}, {"Vitamin B1 (mg)", 1.8}, {"Vitamin B2 (mg)", 2.7}, {"Niacin (mg)", 18.0}, {"Vitamin C (mg)", 75.0}}; struct Commodity { std::string name; //!< Commodity name std::string unit; //!< Unit double price; //!< 1939 price per unit (cents) //! Calories (kcal), //! Protein (g), //! Calcium (g), //! Iron (mg), //! Vitamin A (kIU), //! Vitamin B1 (mg), //! Vitamin B2 (mg), //! Niacin (mg), //! Vitamin C (mg) std::array<double, 9> nutrients; }; std::vector<Commodity> data = { {"Wheat Flour (Enriched)", "10 lb.", 36, {44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0}}, {"Macaroni", "1 lb.", 14.1, {11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0}}, {"Wheat Cereal (Enriched)", "28 oz.", 24.2, {11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0}}, {"Corn Flakes", "8 oz.", 7.1, {11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0}}, {"Corn Meal", "1 lb.", 4.6, {36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0}}, {"Hominy Grits", "24 oz.", 8.5, {28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0}}, {"Rice", "1 lb.", 7.5, {21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0}}, {"Rolled Oats", "1 lb.", 7.1, {25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0}}, {"White Bread (Enriched)", "1 lb.", 7.9, {15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0}}, {"Whole Wheat Bread", "1 lb.", 9.1, {12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0}}, {"Rye Bread", "1 lb.", 9.1, {12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0}}, {"Pound Cake", "1 lb.", 24.8, {8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0}}, {"Soda Crackers", "1 lb.", 15.1, {12.5, 288, 0.5, 50, 0, 0, 0, 0, 0}}, {"Milk", "1 qt.", 11, {6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177}}, {"Evaporated Milk (can)", "14.5 oz.", 6.7, {8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60}}, {"Butter", "1 lb.", 30.8, {10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0}}, {"Oleomargarine", "1 lb.", 16.1, {20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0}}, {"Eggs", "1 doz.", 32.6, {2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0}}, {"Cheese (Cheddar)", "1 lb.", 24.2, {7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0}}, {"Cream", "1/2 pt.", 14.1, {3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17}}, {"Peanut Butter", "1 lb.", 17.9, {15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0}}, {"Mayonnaise", "1/2 pt.", 16.7, {8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0}}, {"Crisco", "1 lb.", 20.3, {20.1, 0, 0, 0, 0, 0, 0, 0, 0}}, {"Lard", "1 lb.", 9.8, {41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0}}, {"Sirloin Steak", "1 lb.", 39.6, {2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0}}, {"Round Steak", "1 lb.", 36.4, {2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0}}, {"Rib Roast", "1 lb.", 29.2, {3.4, 213, 0.1, 33, 0, 0, 2, 0, 0}}, {"Chuck Roast", "1 lb.", 22.6, {3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0}}, {"Plate", "1 lb.", 14.6, {8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0}}, {"Liver (Beef)", "1 lb.", 26.8, {2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525}}, {"Leg of Lamb", "1 lb.", 27.6, {3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0}}, {"Lamb Chops (Rib)", "1 lb.", 36.6, {3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0}}, {"Pork Chops", "1 lb.", 30.7, {3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0}}, {"Pork Loin Roast", "1 lb.", 24.2, {4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0}}, {"Bacon", "1 lb.", 25.6, {10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0}}, {"Ham, smoked", "1 lb.", 27.4, {6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0}}, {"Salt Pork", "1 lb.", 16, {18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0}}, {"Roasting Chicken", "1 lb.", 30.3, {1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46}}, {"Veal Cutlets", "1 lb.", 42.3, {1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0}}, {"Salmon, Pink (can)", "16 oz.", 13, {5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0}}, {"Apples", "1 lb.", 4.4, {5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544}}, {"Bananas", "1 lb.", 6.1, {4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498}}, {"Lemons", "1 doz.", 26, {1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952}}, {"Oranges", "1 doz.", 30.9, {2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998}}, {"Green Beans", "1 lb.", 7.1, {2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862}}, {"Cabbage", "1 lb.", 3.7, {2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369}}, {"Carrots", "1 bunch", 4.7, {2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608}}, {"Celery", "1 stalk", 7.3, {0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313}}, {"Lettuce", "1 head", 8.2, {0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449}}, {"Onions", "1 lb.", 3.6, {5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184}}, {"Potatoes", "15 lb.", 34, {14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522}}, {"Spinach", "1 lb.", 8.1, {1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755}}, {"Sweet Potatoes", "1 lb.", 5.1, {9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912}}, {"Peaches (can)", "No. 2 1/2", 16.8, {3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196}}, {"Pears (can)", "No. 2 1/2", 20.4, {3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81}}, {"Pineapple (can)", "No. 2 1/2", 21.3, {2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399}}, {"Asparagus (can)", "No. 2", 27.7, {0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272}}, {"Green Beans (can)", "No. 2", 10, {1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431}}, {"Pork and Beans (can)", "16 oz.", 7.1, {7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0}}, {"Corn (can)", "No. 2", 10.4, {5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218}}, {"Peas (can)", "No. 2", 13.8, {2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370}}, {"Tomatoes (can)", "No. 2", 8.6, {1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253}}, {"Tomato Soup (can)", "10 1/2 oz.", 7.6, {1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862}}, {"Peaches, Dried", "1 lb.", 15.7, {8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57}}, {"Prunes, Dried", "1 lb.", 9, {12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257}}, {"Raisins, Dried", "15 oz.", 9.4, {13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136}}, {"Peas, Dried", "1 lb.", 7.9, {20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0}}, {"Lima Beans, Dried", "1 lb.", 8.9, {17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0}}, {"Navy Beans, Dried", "1 lb.", 5.9, {26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0}}, {"Coffee", "1 lb.", 22.4, {0, 0, 0, 0, 0, 4, 5.1, 50, 0}}, {"Tea", "1/4 lb.", 17.4, {0, 0, 0, 0, 0, 0, 2.3, 42, 0}}, {"Cocoa", "8 oz.", 8.6, {8.7, 237, 3, 72, 0, 2, 11.9, 40, 0}}, {"Chocolate", "8 oz.", 16.2, {8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0}}, {"Sugar", "10 lb.", 51.7, {34.9, 0, 0, 0, 0, 0, 0, 0, 0}}, {"Corn Syrup", "24 oz.", 13.7, {14.7, 0, 0.5, 74, 0, 0, 0, 5, 0}}, {"Molasses", "18 oz.", 13.6, {9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0}}, {"Strawberry Preserves", "1 lb.", 20.5, {6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0}}};
جاوا
// Nutrient minimums. List<Object[]> nutrients = new ArrayList<>(); nutrients.add(new Object[] {"Calories (kcal)", 3.0}); nutrients.add(new Object[] {"Protein (g)", 70.0}); nutrients.add(new Object[] {"Calcium (g)", 0.8}); nutrients.add(new Object[] {"Iron (mg)", 12.0}); nutrients.add(new Object[] {"Vitamin A (kIU)", 5.0}); nutrients.add(new Object[] {"Vitamin B1 (mg)", 1.8}); nutrients.add(new Object[] {"Vitamin B2 (mg)", 2.7}); nutrients.add(new Object[] {"Niacin (mg)", 18.0}); nutrients.add(new Object[] {"Vitamin C (mg)", 75.0}); List<Object[]> data = new ArrayList<>(); data.add(new Object[] {"Wheat Flour (Enriched)", "10 lb.", 36, new double[] {44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0}}); data.add(new Object[] { "Macaroni", "1 lb.", 14.1, new double[] {11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0}}); data.add(new Object[] {"Wheat Cereal (Enriched)", "28 oz.", 24.2, new double[] {11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0}}); data.add(new Object[] { "Corn Flakes", "8 oz.", 7.1, new double[] {11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0}}); data.add(new Object[] { "Corn Meal", "1 lb.", 4.6, new double[] {36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0}}); data.add(new Object[] { "Hominy Grits", "24 oz.", 8.5, new double[] {28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0}}); data.add( new Object[] {"Rice", "1 lb.", 7.5, new double[] {21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0}}); data.add(new Object[] { "Rolled Oats", "1 lb.", 7.1, new double[] {25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0}}); data.add(new Object[] {"White Bread (Enriched)", "1 lb.", 7.9, new double[] {15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0}}); data.add(new Object[] {"Whole Wheat Bread", "1 lb.", 9.1, new double[] {12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0}}); data.add(new Object[] { "Rye Bread", "1 lb.", 9.1, new double[] {12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0}}); data.add(new Object[] { "Pound Cake", "1 lb.", 24.8, new double[] {8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0}}); data.add(new Object[] { "Soda Crackers", "1 lb.", 15.1, new double[] {12.5, 288, 0.5, 50, 0, 0, 0, 0, 0}}); data.add( new Object[] {"Milk", "1 qt.", 11, new double[] {6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177}}); data.add(new Object[] {"Evaporated Milk (can)", "14.5 oz.", 6.7, new double[] {8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60}}); data.add( new Object[] {"Butter", "1 lb.", 30.8, new double[] {10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0}}); data.add(new Object[] { "Oleomargarine", "1 lb.", 16.1, new double[] {20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0}}); data.add(new Object[] { "Eggs", "1 doz.", 32.6, new double[] {2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0}}); data.add(new Object[] {"Cheese (Cheddar)", "1 lb.", 24.2, new double[] {7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0}}); data.add(new Object[] { "Cream", "1/2 pt.", 14.1, new double[] {3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17}}); data.add(new Object[] { "Peanut Butter", "1 lb.", 17.9, new double[] {15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0}}); data.add(new Object[] { "Mayonnaise", "1/2 pt.", 16.7, new double[] {8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0}}); data.add(new Object[] {"Crisco", "1 lb.", 20.3, new double[] {20.1, 0, 0, 0, 0, 0, 0, 0, 0}}); data.add(new Object[] {"Lard", "1 lb.", 9.8, new double[] {41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0}}); data.add(new Object[] { "Sirloin Steak", "1 lb.", 39.6, new double[] {2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0}}); data.add(new Object[] { "Round Steak", "1 lb.", 36.4, new double[] {2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0}}); data.add( new Object[] {"Rib Roast", "1 lb.", 29.2, new double[] {3.4, 213, 0.1, 33, 0, 0, 2, 0, 0}}); data.add(new Object[] { "Chuck Roast", "1 lb.", 22.6, new double[] {3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0}}); data.add( new Object[] {"Plate", "1 lb.", 14.6, new double[] {8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0}}); data.add(new Object[] {"Liver (Beef)", "1 lb.", 26.8, new double[] {2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525}}); data.add(new Object[] { "Leg of Lamb", "1 lb.", 27.6, new double[] {3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0}}); data.add(new Object[] { "Lamb Chops (Rib)", "1 lb.", 36.6, new double[] {3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0}}); data.add(new Object[] { "Pork Chops", "1 lb.", 30.7, new double[] {3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0}}); data.add(new Object[] { "Pork Loin Roast", "1 lb.", 24.2, new double[] {4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0}}); data.add(new Object[] { "Bacon", "1 lb.", 25.6, new double[] {10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0}}); data.add(new Object[] { "Ham, smoked", "1 lb.", 27.4, new double[] {6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0}}); data.add(new Object[] { "Salt Pork", "1 lb.", 16, new double[] {18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0}}); data.add(new Object[] {"Roasting Chicken", "1 lb.", 30.3, new double[] {1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46}}); data.add(new Object[] { "Veal Cutlets", "1 lb.", 42.3, new double[] {1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0}}); data.add(new Object[] { "Salmon, Pink (can)", "16 oz.", 13, new double[] {5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0}}); data.add(new Object[] { "Apples", "1 lb.", 4.4, new double[] {5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544}}); data.add(new Object[] { "Bananas", "1 lb.", 6.1, new double[] {4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498}}); data.add( new Object[] {"Lemons", "1 doz.", 26, new double[] {1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952}}); data.add(new Object[] { "Oranges", "1 doz.", 30.9, new double[] {2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998}}); data.add(new Object[] { "Green Beans", "1 lb.", 7.1, new double[] {2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862}}); data.add(new Object[] { "Cabbage", "1 lb.", 3.7, new double[] {2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369}}); data.add(new Object[] { "Carrots", "1 bunch", 4.7, new double[] {2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608}}); data.add(new Object[] { "Celery", "1 stalk", 7.3, new double[] {0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313}}); data.add(new Object[] { "Lettuce", "1 head", 8.2, new double[] {0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449}}); data.add(new Object[] { "Onions", "1 lb.", 3.6, new double[] {5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184}}); data.add(new Object[] { "Potatoes", "15 lb.", 34, new double[] {14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522}}); data.add(new Object[] { "Spinach", "1 lb.", 8.1, new double[] {1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755}}); data.add(new Object[] {"Sweet Potatoes", "1 lb.", 5.1, new double[] {9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912}}); data.add(new Object[] {"Peaches (can)", "No. 2 1/2", 16.8, new double[] {3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196}}); data.add(new Object[] { "Pears (can)", "No. 2 1/2", 20.4, new double[] {3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81}}); data.add(new Object[] { "Pineapple (can)", "No. 2 1/2", 21.3, new double[] {2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399}}); data.add(new Object[] {"Asparagus (can)", "No. 2", 27.7, new double[] {0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272}}); data.add(new Object[] { "Green Beans (can)", "No. 2", 10, new double[] {1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431}}); data.add(new Object[] {"Pork and Beans (can)", "16 oz.", 7.1, new double[] {7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0}}); data.add(new Object[] { "Corn (can)", "No. 2", 10.4, new double[] {5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218}}); data.add(new Object[] { "Peas (can)", "No. 2", 13.8, new double[] {2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370}}); data.add(new Object[] { "Tomatoes (can)", "No. 2", 8.6, new double[] {1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253}}); data.add(new Object[] {"Tomato Soup (can)", "10 1/2 oz.", 7.6, new double[] {1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862}}); data.add(new Object[] { "Peaches, Dried", "1 lb.", 15.7, new double[] {8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57}}); data.add(new Object[] { "Prunes, Dried", "1 lb.", 9, new double[] {12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257}}); data.add(new Object[] {"Raisins, Dried", "15 oz.", 9.4, new double[] {13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136}}); data.add(new Object[] { "Peas, Dried", "1 lb.", 7.9, new double[] {20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0}}); data.add(new Object[] {"Lima Beans, Dried", "1 lb.", 8.9, new double[] {17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0}}); data.add(new Object[] {"Navy Beans, Dried", "1 lb.", 5.9, new double[] {26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0}}); data.add(new Object[] {"Coffee", "1 lb.", 22.4, new double[] {0, 0, 0, 0, 0, 4, 5.1, 50, 0}}); data.add(new Object[] {"Tea", "1/4 lb.", 17.4, new double[] {0, 0, 0, 0, 0, 0, 2.3, 42, 0}}); data.add( new Object[] {"Cocoa", "8 oz.", 8.6, new double[] {8.7, 237, 3, 72, 0, 2, 11.9, 40, 0}}); data.add(new Object[] { "Chocolate", "8 oz.", 16.2, new double[] {8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0}}); data.add(new Object[] {"Sugar", "10 lb.", 51.7, new double[] {34.9, 0, 0, 0, 0, 0, 0, 0, 0}}); data.add(new Object[] { "Corn Syrup", "24 oz.", 13.7, new double[] {14.7, 0, 0.5, 74, 0, 0, 0, 5, 0}}); data.add(new Object[] { "Molasses", "18 oz.", 13.6, new double[] {9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0}}); data.add(new Object[] {"Strawberry Preserves", "1 lb.", 20.5, new double[] {6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0}});
سی شارپ
// Nutrient minimums. (String Name, double Value)[] nutrients = new[] { ("Calories (kcal)", 3.0), ("Protein (g)", 70.0), ("Calcium (g)", 0.8), ("Iron (mg)", 12.0), ("Vitamin A (kIU)", 5.0), ("Vitamin B1 (mg)", 1.8), ("Vitamin B2 (mg)", 2.7), ("Niacin (mg)", 18.0), ("Vitamin C (mg)", 75.0) }; (String Name, String Unit, double Price, double[] Nutrients)[] data = new[] { ("Wheat Flour (Enriched)", "10 lb.", 36, new double[] { 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0 }), ("Macaroni", "1 lb.", 14.1, new double[] { 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0 }), ("Wheat Cereal (Enriched)", "28 oz.", 24.2, new double[] { 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0 }), ("Corn Flakes", "8 oz.", 7.1, new double[] { 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0 }), ("Corn Meal", "1 lb.", 4.6, new double[] { 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0 }), ("Hominy Grits", "24 oz.", 8.5, new double[] { 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0 }), ("Rice", "1 lb.", 7.5, new double[] { 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0 }), ("Rolled Oats", "1 lb.", 7.1, new double[] { 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0 }), ("White Bread (Enriched)", "1 lb.", 7.9, new double[] { 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0 }), ("Whole Wheat Bread", "1 lb.", 9.1, new double[] { 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0 }), ("Rye Bread", "1 lb.", 9.1, new double[] { 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0 }), ("Pound Cake", "1 lb.", 24.8, new double[] { 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0 }), ("Soda Crackers", "1 lb.", 15.1, new double[] { 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0 }), ("Milk", "1 qt.", 11, new double[] { 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177 }), ("Evaporated Milk (can)", "14.5 oz.", 6.7, new double[] { 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60 }), ("Butter", "1 lb.", 30.8, new double[] { 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0 }), ("Oleomargarine", "1 lb.", 16.1, new double[] { 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0 }), ("Eggs", "1 doz.", 32.6, new double[] { 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0 }), ("Cheese (Cheddar)", "1 lb.", 24.2, new double[] { 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0 }), ("Cream", "1/2 pt.", 14.1, new double[] { 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17 }), ("Peanut Butter", "1 lb.", 17.9, new double[] { 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0 }), ("Mayonnaise", "1/2 pt.", 16.7, new double[] { 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0 }), ("Crisco", "1 lb.", 20.3, new double[] { 20.1, 0, 0, 0, 0, 0, 0, 0, 0 }), ("Lard", "1 lb.", 9.8, new double[] { 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0 }), ("Sirloin Steak", "1 lb.", 39.6, new double[] { 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0 }), ("Round Steak", "1 lb.", 36.4, new double[] { 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0 }), ("Rib Roast", "1 lb.", 29.2, new double[] { 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0 }), ("Chuck Roast", "1 lb.", 22.6, new double[] { 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0 }), ("Plate", "1 lb.", 14.6, new double[] { 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0 }), ("Liver (Beef)", "1 lb.", 26.8, new double[] { 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525 }), ("Leg of Lamb", "1 lb.", 27.6, new double[] { 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0 }), ("Lamb Chops (Rib)", "1 lb.", 36.6, new double[] { 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0 }), ("Pork Chops", "1 lb.", 30.7, new double[] { 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0 }), ("Pork Loin Roast", "1 lb.", 24.2, new double[] { 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0 }), ("Bacon", "1 lb.", 25.6, new double[] { 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0 }), ("Ham, smoked", "1 lb.", 27.4, new double[] { 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0 }), ("Salt Pork", "1 lb.", 16, new double[] { 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0 }), ("Roasting Chicken", "1 lb.", 30.3, new double[] { 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46 }), ("Veal Cutlets", "1 lb.", 42.3, new double[] { 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0 }), ("Salmon, Pink (can)", "16 oz.", 13, new double[] { 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0 }), ("Apples", "1 lb.", 4.4, new double[] { 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544 }), ("Bananas", "1 lb.", 6.1, new double[] { 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498 }), ("Lemons", "1 doz.", 26, new double[] { 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952 }), ("Oranges", "1 doz.", 30.9, new double[] { 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998 }), ("Green Beans", "1 lb.", 7.1, new double[] { 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862 }), ("Cabbage", "1 lb.", 3.7, new double[] { 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369 }), ("Carrots", "1 bunch", 4.7, new double[] { 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608 }), ("Celery", "1 stalk", 7.3, new double[] { 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313 }), ("Lettuce", "1 head", 8.2, new double[] { 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449 }), ("Onions", "1 lb.", 3.6, new double[] { 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184 }), ("Potatoes", "15 lb.", 34, new double[] { 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522 }), ("Spinach", "1 lb.", 8.1, new double[] { 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755 }), ("Sweet Potatoes", "1 lb.", 5.1, new double[] { 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912 }), ("Peaches (can)", "No. 2 1/2", 16.8, new double[] { 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196 }), ("Pears (can)", "No. 2 1/2", 20.4, new double[] { 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81 }), ("Pineapple (can)", "No. 2 1/2", 21.3, new double[] { 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399 }), ("Asparagus (can)", "No. 2", 27.7, new double[] { 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272 }), ("Green Beans (can)", "No. 2", 10, new double[] { 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431 }), ("Pork and Beans (can)", "16 oz.", 7.1, new double[] { 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0 }), ("Corn (can)", "No. 2", 10.4, new double[] { 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218 }), ("Peas (can)", "No. 2", 13.8, new double[] { 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370 }), ("Tomatoes (can)", "No. 2", 8.6, new double[] { 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253 }), ("Tomato Soup (can)", "10 1/2 oz.", 7.6, new double[] { 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862 }), ("Peaches, Dried", "1 lb.", 15.7, new double[] { 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57 }), ("Prunes, Dried", "1 lb.", 9, new double[] { 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257 }), ("Raisins, Dried", "15 oz.", 9.4, new double[] { 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136 }), ("Peas, Dried", "1 lb.", 7.9, new double[] { 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0 }), ("Lima Beans, Dried", "1 lb.", 8.9, new double[] { 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0 }), ("Navy Beans, Dried", "1 lb.", 5.9, new double[] { 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0 }), ("Coffee", "1 lb.", 22.4, new double[] { 0, 0, 0, 0, 0, 4, 5.1, 50, 0 }), ("Tea", "1/4 lb.", 17.4, new double[] { 0, 0, 0, 0, 0, 0, 2.3, 42, 0 }), ("Cocoa", "8 oz.", 8.6, new double[] { 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0 }), ("Chocolate", "8 oz.", 16.2, new double[] { 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0 }), ("Sugar", "10 lb.", 51.7, new double[] { 34.9, 0, 0, 0, 0, 0, 0, 0, 0 }), ("Corn Syrup", "24 oz.", 13.7, new double[] { 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0 }), ("Molasses", "18 oz.", 13.6, new double[] { 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0 }), ("Strawberry Preserves", "1 lb.", 20.5, new double[] { 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0 }) };
حل کننده LP را اعلام کنید
کد زیر پوشش MPsolver
نمونه سازی می کند.
پایتون
# Instantiate a Glop solver and naming it. solver = pywraplp.Solver.CreateSolver("GLOP") if not solver: return
C++
// Create the linear solver with the GLOP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("GLOP"));
جاوا
// Create the linear solver with the GLOP backend. MPSolver solver = MPSolver.createSolver("GLOP"); if (solver == null) { System.out.println("Could not create solver GLOP"); return; }
سی شارپ
// Create the linear solver with the GLOP backend. Solver solver = Solver.CreateSolver("GLOP"); if (solver is null) { return; }
متغیرها را ایجاد کنید
کد زیر متغیرهای مشکل را ایجاد می کند.
پایتون
# Declare an array to hold our variables. foods = [solver.NumVar(0.0, solver.infinity(), item[0]) for item in data] print("Number of variables =", solver.NumVariables())
C++
std::vector<MPVariable*> foods; const double infinity = solver->infinity(); for (const Commodity& commodity : data) { foods.push_back(solver->MakeNumVar(0.0, infinity, commodity.name)); } LOG(INFO) << "Number of variables = " << solver->NumVariables();
جاوا
double infinity = java.lang.Double.POSITIVE_INFINITY; List<MPVariable> foods = new ArrayList<>(); for (int i = 0; i < data.size(); ++i) { foods.add(solver.makeNumVar(0.0, infinity, (String) data.get(i)[0])); } System.out.println("Number of variables = " + solver.numVariables());
سی شارپ
List<Variable> foods = new List<Variable>(); for (int i = 0; i < data.Length; ++i) { foods.Add(solver.MakeNumVar(0.0, double.PositiveInfinity, data[i].Name)); } Console.WriteLine($"Number of variables = {solver.NumVariables()}");
متد MakeNumVar
برای هر ردیف از جدول یک متغیر food[i]
ایجاد می کند. همانطور که قبلاً ذکر شد، دادههای تغذیهای به ازای هر دلار است، بنابراین food[i]
مقدار پولی است که برای کالای i
خرج میشود.
محدودیت ها را تعریف کنید
محدودیت های رژیم استیگلر مستلزم آن است که مقدار کل مواد مغذی ارائه شده توسط همه غذاها حداقل حداقل مورد نیاز برای هر ماده مغذی باشد. سپس، این محدودیتها را بهعنوان نابرابری مینویسیم که شامل data
آرایهها و nutrients
، و متغیرهای food[i]
.
ابتدا، مقدار ماده مغذی i
ارائه شده توسط غذا j
به ازای هر دلار، data[j][i+3]
(ما 3 را به شاخص ستون اضافه می کنیم زیرا داده های مواد مغذی در ستون چهارم data
شروع می شود.) از آنجایی که مقدار پول به صرف غذا j
food[j]
، مقدار ماده مغذی i
شده توسط غذا j
است\(data[j][i+3] \cdot food[j]\). در نهایت، از آنجایی که حداقل نیاز برای ماده غذایی i
nutrients[i][1]
است، میتوانیم محدودیت i را به صورت زیر بنویسیم:
پایتون
# Create the constraints, one per nutrient. constraints = [] for i, nutrient in enumerate(nutrients): constraints.append(solver.Constraint(nutrient[1], solver.infinity())) for j, item in enumerate(data): constraints[i].SetCoefficient(foods[j], item[i + 3]) print("Number of constraints =", solver.NumConstraints())
C++
// Create the constraints, one per nutrient. std::vector<MPConstraint*> constraints; for (std::size_t i = 0; i < nutrients.size(); ++i) { constraints.push_back( solver->MakeRowConstraint(nutrients[i].second, infinity)); for (std::size_t j = 0; j < data.size(); ++j) { constraints.back()->SetCoefficient(foods[j], data[j].nutrients[i]); } } LOG(INFO) << "Number of constraints = " << solver->NumConstraints();
جاوا
MPConstraint[] constraints = new MPConstraint[nutrients.size()]; for (int i = 0; i < nutrients.size(); ++i) { constraints[i] = solver.makeConstraint( (double) nutrients.get(i)[1], infinity, (String) nutrients.get(i)[0]); for (int j = 0; j < data.size(); ++j) { constraints[i].setCoefficient(foods.get(j), ((double[]) data.get(j)[3])[i]); } // constraints.add(constraint); } System.out.println("Number of constraints = " + solver.numConstraints());
سی شارپ
List<Constraint> constraints = new List<Constraint>(); for (int i = 0; i < nutrients.Length; ++i) { Constraint constraint = solver.MakeConstraint(nutrients[i].Value, double.PositiveInfinity, nutrients[i].Name); for (int j = 0; j < data.Length; ++j) { constraint.SetCoefficient(foods[j], data[j].Nutrients[i]); } constraints.Add(constraint); } Console.WriteLine($"Number of constraints = {solver.NumConstraints()}");
Constraint
متد پایتون (مرتبط با روش C++ MakeRowConstraint
) محدودیتهای مشکل را ایجاد میکند. برای هر i
، constraint(nutrients[i][1], solver.infinity)
این محدودیتی ایجاد می کند که در آن ترکیب خطی متغیرهای food[j]
(تعریف بعدی) بزرگتر یا مساوی با nutrients[i][1]
باشد. ضرایب عبارت خطی با روش SetCoefficient
به صورت زیر تعریف می شود: SetCoefficient(food[j], data[j][i+3]
این ضریب food[j]
را data[j][i+3]
قرار میدهد.
با کنار هم قرار دادن همه اینها، کد محدودیت های بیان شده در (1) در بالا را تعریف می کند.
هدف را ایجاد کنید
کد زیر تابع هدف را برای مشکل تعریف می کند.
پایتون
# Objective function: Minimize the sum of (price-normalized) foods. objective = solver.Objective() for food in foods: objective.SetCoefficient(food, 1) objective.SetMinimization()
C++
MPObjective* const objective = solver->MutableObjective(); for (size_t i = 0; i < data.size(); ++i) { objective->SetCoefficient(foods[i], 1); } objective->SetMinimization();
جاوا
MPObjective objective = solver.objective(); for (int i = 0; i < data.size(); ++i) { objective.setCoefficient(foods.get(i), 1); } objective.setMinimization();
سی شارپ
Objective objective = solver.Objective(); for (int i = 0; i < data.Length; ++i) { objective.SetCoefficient(foods[i], 1); } objective.SetMinimization();
تابع هدف هزینه کل غذا است که مجموع متغیرهای food[i]
است.
روش SetCoefficient
ضرایب تابع هدف را تنظیم می کند که در این حالت همه 1
هستند. در نهایت، SetMinimization
اعلام می کند که این یک مشکل کمینه سازی است.
حل کننده را فراخوانی کنید
کد زیر حل کننده را فراخوانی می کند.
پایتون
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve();
جاوا
final MPSolver.ResultStatus resultStatus = solver.solve();
سی شارپ
Solver.ResultStatus resultStatus = solver.Solve();
Glop مشکل را در یک کامپیوتر معمولی در کمتر از 300 میلی ثانیه حل می کند:
راه حل را نمایش دهید
کد زیر راه حل را نمایش می دهد.
پایتون
# Check that the problem has an optimal solution. if status != solver.OPTIMAL: print("The problem does not have an optimal solution!") if status == solver.FEASIBLE: print("A potentially suboptimal solution was found.") else: print("The solver could not solve the problem.") exit(1) # Display the amounts (in dollars) to purchase of each food. nutrients_result = [0] * len(nutrients) print("\nAnnual Foods:") for i, food in enumerate(foods): if food.solution_value() > 0.0: print("{}: ${}".format(data[i][0], 365.0 * food.solution_value())) for j, _ in enumerate(nutrients): nutrients_result[j] += data[i][j + 3] * food.solution_value() print("\nOptimal annual price: ${:.4f}".format(365.0 * objective.Value())) print("\nNutrients per day:") for i, nutrient in enumerate(nutrients): print( "{}: {:.2f} (min {})".format(nutrient[0], nutrients_result[i], nutrient[1]) )
C++
// Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(INFO) << "The problem does not have an optimal solution!"; if (result_status == MPSolver::FEASIBLE) { LOG(INFO) << "A potentially suboptimal solution was found"; } else { LOG(INFO) << "The solver could not solve the problem."; return; } } std::vector<double> nutrients_result(nutrients.size()); LOG(INFO) << ""; LOG(INFO) << "Annual Foods:"; for (std::size_t i = 0; i < data.size(); ++i) { if (foods[i]->solution_value() > 0.0) { LOG(INFO) << data[i].name << ": $" << std::to_string(365. * foods[i]->solution_value()); for (std::size_t j = 0; j < nutrients.size(); ++j) { nutrients_result[j] += data[i].nutrients[j] * foods[i]->solution_value(); } } } LOG(INFO) << ""; LOG(INFO) << "Optimal annual price: $" << std::to_string(365. * objective->Value()); LOG(INFO) << ""; LOG(INFO) << "Nutrients per day:"; for (std::size_t i = 0; i < nutrients.size(); ++i) { LOG(INFO) << nutrients[i].first << ": " << std::to_string(nutrients_result[i]) << " (min " << std::to_string(nutrients[i].second) << ")"; }
جاوا
// Check that the problem has an optimal solution. if (resultStatus != MPSolver.ResultStatus.OPTIMAL) { System.err.println("The problem does not have an optimal solution!"); if (resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.err.println("A potentially suboptimal solution was found."); } else { System.err.println("The solver could not solve the problem."); return; } } // Display the amounts (in dollars) to purchase of each food. double[] nutrientsResult = new double[nutrients.size()]; System.out.println("\nAnnual Foods:"); for (int i = 0; i < foods.size(); ++i) { if (foods.get(i).solutionValue() > 0.0) { System.out.println((String) data.get(i)[0] + ": $" + 365 * foods.get(i).solutionValue()); for (int j = 0; j < nutrients.size(); ++j) { nutrientsResult[j] += ((double[]) data.get(i)[3])[j] * foods.get(i).solutionValue(); } } } System.out.println("\nOptimal annual price: $" + 365 * objective.value()); System.out.println("\nNutrients per day:"); for (int i = 0; i < nutrients.size(); ++i) { System.out.println( nutrients.get(i)[0] + ": " + nutrientsResult[i] + " (min " + nutrients.get(i)[1] + ")"); }
سی شارپ
// Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); if (resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine("A potentially suboptimal solution was found."); } else { Console.WriteLine("The solver could not solve the problem."); return; } } // Display the amounts (in dollars) to purchase of each food. double[] nutrientsResult = new double[nutrients.Length]; Console.WriteLine("\nAnnual Foods:"); for (int i = 0; i < foods.Count; ++i) { if (foods[i].SolutionValue() > 0.0) { Console.WriteLine($"{data[i].Name}: ${365 * foods[i].SolutionValue():N2}"); for (int j = 0; j < nutrients.Length; ++j) { nutrientsResult[j] += data[i].Nutrients[j] * foods[i].SolutionValue(); } } } Console.WriteLine($"\nOptimal annual price: ${365 * objective.Value():N2}"); Console.WriteLine("\nNutrients per day:"); for (int i = 0; i < nutrients.Length; ++i) { Console.WriteLine($"{nutrients[i].Name}: {nutrientsResult[i]:N2} (min {nutrients[i].Value})"); }
اینم خروجی برنامه
make rpy_stigler_diet "/usr/bin/python3.11" ortools/linear_solver/samples/stigler_diet.py Number of variables = 77 Number of constraints = 9 Annual Foods: Wheat Flour (Enriched): $10.774457511918223 Liver (Beef): $0.6907834111074193 Cabbage: $4.093268864842877 Spinach: $1.8277960703546996 Navy Beans, Dried: $22.275425687243036 Optimal annual price: $39.6617 Nutrients per day: Calories (kcal): 3.00 (min 3) Protein (g): 147.41 (min 70) Calcium (g): 0.80 (min 0.8) Iron (mg): 60.47 (min 12) Vitamin A (KIU): 5.00 (min 5) Vitamin B1 (mg): 4.12 (min 1.8) Vitamin B2 (mg): 2.70 (min 2.7) Niacin (mg): 27.32 (min 18) Vitamin C (mg): 75.00 (min 75) Advanced usage: Problem solved in 1 milliseconds Problem solved in 14 iterations
کد کامل برنامه
کد کامل برنامه رژیم غذایی استیگلر در زیر نشان داده شده است.
پایتون
"""The Stigler diet problem. A description of the problem can be found here: https://en.wikipedia.org/wiki/Stigler_diet. """ from ortools.linear_solver import pywraplp def main(): """Entry point of the program.""" # Instantiate the data problem. # Nutrient minimums. nutrients = [ ["Calories (kcal)", 3], ["Protein (g)", 70], ["Calcium (g)", 0.8], ["Iron (mg)", 12], ["Vitamin A (KIU)", 5], ["Vitamin B1 (mg)", 1.8], ["Vitamin B2 (mg)", 2.7], ["Niacin (mg)", 18], ["Vitamin C (mg)", 75], ] # Commodity, Unit, 1939 price (cents), Calories (kcal), Protein (g), # Calcium (g), Iron (mg), Vitamin A (KIU), Vitamin B1 (mg), Vitamin B2 (mg), # Niacin (mg), Vitamin C (mg) data = [ # fmt: off ['Wheat Flour (Enriched)', '10 lb.', 36, 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0], ['Macaroni', '1 lb.', 14.1, 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0], ['Wheat Cereal (Enriched)', '28 oz.', 24.2, 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0], ['Corn Flakes', '8 oz.', 7.1, 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0], ['Corn Meal', '1 lb.', 4.6, 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0], ['Hominy Grits', '24 oz.', 8.5, 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0], ['Rice', '1 lb.', 7.5, 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0], ['Rolled Oats', '1 lb.', 7.1, 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0], ['White Bread (Enriched)', '1 lb.', 7.9, 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0], ['Whole Wheat Bread', '1 lb.', 9.1, 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0], ['Rye Bread', '1 lb.', 9.1, 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0], ['Pound Cake', '1 lb.', 24.8, 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0], ['Soda Crackers', '1 lb.', 15.1, 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0], ['Milk', '1 qt.', 11, 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177], ['Evaporated Milk (can)', '14.5 oz.', 6.7, 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60], ['Butter', '1 lb.', 30.8, 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0], ['Oleomargarine', '1 lb.', 16.1, 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0], ['Eggs', '1 doz.', 32.6, 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0], ['Cheese (Cheddar)', '1 lb.', 24.2, 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0], ['Cream', '1/2 pt.', 14.1, 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17], ['Peanut Butter', '1 lb.', 17.9, 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0], ['Mayonnaise', '1/2 pt.', 16.7, 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0], ['Crisco', '1 lb.', 20.3, 20.1, 0, 0, 0, 0, 0, 0, 0, 0], ['Lard', '1 lb.', 9.8, 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0], ['Sirloin Steak', '1 lb.', 39.6, 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0], ['Round Steak', '1 lb.', 36.4, 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0], ['Rib Roast', '1 lb.', 29.2, 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0], ['Chuck Roast', '1 lb.', 22.6, 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0], ['Plate', '1 lb.', 14.6, 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0], ['Liver (Beef)', '1 lb.', 26.8, 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525], ['Leg of Lamb', '1 lb.', 27.6, 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0], ['Lamb Chops (Rib)', '1 lb.', 36.6, 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0], ['Pork Chops', '1 lb.', 30.7, 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0], ['Pork Loin Roast', '1 lb.', 24.2, 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0], ['Bacon', '1 lb.', 25.6, 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0], ['Ham, smoked', '1 lb.', 27.4, 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0], ['Salt Pork', '1 lb.', 16, 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0], ['Roasting Chicken', '1 lb.', 30.3, 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46], ['Veal Cutlets', '1 lb.', 42.3, 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0], ['Salmon, Pink (can)', '16 oz.', 13, 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0], ['Apples', '1 lb.', 4.4, 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544], ['Bananas', '1 lb.', 6.1, 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498], ['Lemons', '1 doz.', 26, 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952], ['Oranges', '1 doz.', 30.9, 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998], ['Green Beans', '1 lb.', 7.1, 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862], ['Cabbage', '1 lb.', 3.7, 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369], ['Carrots', '1 bunch', 4.7, 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608], ['Celery', '1 stalk', 7.3, 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313], ['Lettuce', '1 head', 8.2, 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449], ['Onions', '1 lb.', 3.6, 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184], ['Potatoes', '15 lb.', 34, 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522], ['Spinach', '1 lb.', 8.1, 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755], ['Sweet Potatoes', '1 lb.', 5.1, 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912], ['Peaches (can)', 'No. 2 1/2', 16.8, 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196], ['Pears (can)', 'No. 2 1/2', 20.4, 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81], ['Pineapple (can)', 'No. 2 1/2', 21.3, 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399], ['Asparagus (can)', 'No. 2', 27.7, 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272], ['Green Beans (can)', 'No. 2', 10, 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431], ['Pork and Beans (can)', '16 oz.', 7.1, 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0], ['Corn (can)', 'No. 2', 10.4, 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218], ['Peas (can)', 'No. 2', 13.8, 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370], ['Tomatoes (can)', 'No. 2', 8.6, 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253], ['Tomato Soup (can)', '10 1/2 oz.', 7.6, 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862], ['Peaches, Dried', '1 lb.', 15.7, 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57], ['Prunes, Dried', '1 lb.', 9, 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257], ['Raisins, Dried', '15 oz.', 9.4, 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136], ['Peas, Dried', '1 lb.', 7.9, 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0], ['Lima Beans, Dried', '1 lb.', 8.9, 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0], ['Navy Beans, Dried', '1 lb.', 5.9, 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0], ['Coffee', '1 lb.', 22.4, 0, 0, 0, 0, 0, 4, 5.1, 50, 0], ['Tea', '1/4 lb.', 17.4, 0, 0, 0, 0, 0, 0, 2.3, 42, 0], ['Cocoa', '8 oz.', 8.6, 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0], ['Chocolate', '8 oz.', 16.2, 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0], ['Sugar', '10 lb.', 51.7, 34.9, 0, 0, 0, 0, 0, 0, 0, 0], ['Corn Syrup', '24 oz.', 13.7, 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0], ['Molasses', '18 oz.', 13.6, 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0], ['Strawberry Preserves', '1 lb.', 20.5, 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0], # fmt: on ] # Instantiate a Glop solver and naming it. solver = pywraplp.Solver.CreateSolver("GLOP") if not solver: return # Declare an array to hold our variables. foods = [solver.NumVar(0.0, solver.infinity(), item[0]) for item in data] print("Number of variables =", solver.NumVariables()) # Create the constraints, one per nutrient. constraints = [] for i, nutrient in enumerate(nutrients): constraints.append(solver.Constraint(nutrient[1], solver.infinity())) for j, item in enumerate(data): constraints[i].SetCoefficient(foods[j], item[i + 3]) print("Number of constraints =", solver.NumConstraints()) # Objective function: Minimize the sum of (price-normalized) foods. objective = solver.Objective() for food in foods: objective.SetCoefficient(food, 1) objective.SetMinimization() print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() # Check that the problem has an optimal solution. if status != solver.OPTIMAL: print("The problem does not have an optimal solution!") if status == solver.FEASIBLE: print("A potentially suboptimal solution was found.") else: print("The solver could not solve the problem.") exit(1) # Display the amounts (in dollars) to purchase of each food. nutrients_result = [0] * len(nutrients) print("\nAnnual Foods:") for i, food in enumerate(foods): if food.solution_value() > 0.0: print("{}: ${}".format(data[i][0], 365.0 * food.solution_value())) for j, _ in enumerate(nutrients): nutrients_result[j] += data[i][j + 3] * food.solution_value() print("\nOptimal annual price: ${:.4f}".format(365.0 * objective.Value())) print("\nNutrients per day:") for i, nutrient in enumerate(nutrients): print( "{}: {:.2f} (min {})".format(nutrient[0], nutrients_result[i], nutrient[1]) ) print("\nAdvanced usage:") print(f"Problem solved in {solver.wall_time():d} milliseconds") print(f"Problem solved in {solver.iterations():d} iterations") if __name__ == "__main__": main()
C++
// The Stigler diet problem. #include <array> #include <memory> #include <string> #include <utility> // std::pair #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void StiglerDiet() { // Nutrient minimums. const std::vector<std::pair<std::string, double>> nutrients = { {"Calories (kcal)", 3.0}, {"Protein (g)", 70.0}, {"Calcium (g)", 0.8}, {"Iron (mg)", 12.0}, {"Vitamin A (kIU)", 5.0}, {"Vitamin B1 (mg)", 1.8}, {"Vitamin B2 (mg)", 2.7}, {"Niacin (mg)", 18.0}, {"Vitamin C (mg)", 75.0}}; struct Commodity { std::string name; //!< Commodity name std::string unit; //!< Unit double price; //!< 1939 price per unit (cents) //! Calories (kcal), //! Protein (g), //! Calcium (g), //! Iron (mg), //! Vitamin A (kIU), //! Vitamin B1 (mg), //! Vitamin B2 (mg), //! Niacin (mg), //! Vitamin C (mg) std::array<double, 9> nutrients; }; std::vector<Commodity> data = { {"Wheat Flour (Enriched)", "10 lb.", 36, {44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0}}, {"Macaroni", "1 lb.", 14.1, {11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0}}, {"Wheat Cereal (Enriched)", "28 oz.", 24.2, {11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0}}, {"Corn Flakes", "8 oz.", 7.1, {11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0}}, {"Corn Meal", "1 lb.", 4.6, {36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0}}, {"Hominy Grits", "24 oz.", 8.5, {28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0}}, {"Rice", "1 lb.", 7.5, {21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0}}, {"Rolled Oats", "1 lb.", 7.1, {25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0}}, {"White Bread (Enriched)", "1 lb.", 7.9, {15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0}}, {"Whole Wheat Bread", "1 lb.", 9.1, {12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0}}, {"Rye Bread", "1 lb.", 9.1, {12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0}}, {"Pound Cake", "1 lb.", 24.8, {8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0}}, {"Soda Crackers", "1 lb.", 15.1, {12.5, 288, 0.5, 50, 0, 0, 0, 0, 0}}, {"Milk", "1 qt.", 11, {6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177}}, {"Evaporated Milk (can)", "14.5 oz.", 6.7, {8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60}}, {"Butter", "1 lb.", 30.8, {10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0}}, {"Oleomargarine", "1 lb.", 16.1, {20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0}}, {"Eggs", "1 doz.", 32.6, {2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0}}, {"Cheese (Cheddar)", "1 lb.", 24.2, {7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0}}, {"Cream", "1/2 pt.", 14.1, {3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17}}, {"Peanut Butter", "1 lb.", 17.9, {15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0}}, {"Mayonnaise", "1/2 pt.", 16.7, {8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0}}, {"Crisco", "1 lb.", 20.3, {20.1, 0, 0, 0, 0, 0, 0, 0, 0}}, {"Lard", "1 lb.", 9.8, {41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0}}, {"Sirloin Steak", "1 lb.", 39.6, {2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0}}, {"Round Steak", "1 lb.", 36.4, {2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0}}, {"Rib Roast", "1 lb.", 29.2, {3.4, 213, 0.1, 33, 0, 0, 2, 0, 0}}, {"Chuck Roast", "1 lb.", 22.6, {3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0}}, {"Plate", "1 lb.", 14.6, {8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0}}, {"Liver (Beef)", "1 lb.", 26.8, {2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525}}, {"Leg of Lamb", "1 lb.", 27.6, {3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0}}, {"Lamb Chops (Rib)", "1 lb.", 36.6, {3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0}}, {"Pork Chops", "1 lb.", 30.7, {3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0}}, {"Pork Loin Roast", "1 lb.", 24.2, {4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0}}, {"Bacon", "1 lb.", 25.6, {10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0}}, {"Ham, smoked", "1 lb.", 27.4, {6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0}}, {"Salt Pork", "1 lb.", 16, {18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0}}, {"Roasting Chicken", "1 lb.", 30.3, {1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46}}, {"Veal Cutlets", "1 lb.", 42.3, {1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0}}, {"Salmon, Pink (can)", "16 oz.", 13, {5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0}}, {"Apples", "1 lb.", 4.4, {5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544}}, {"Bananas", "1 lb.", 6.1, {4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498}}, {"Lemons", "1 doz.", 26, {1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952}}, {"Oranges", "1 doz.", 30.9, {2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998}}, {"Green Beans", "1 lb.", 7.1, {2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862}}, {"Cabbage", "1 lb.", 3.7, {2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369}}, {"Carrots", "1 bunch", 4.7, {2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608}}, {"Celery", "1 stalk", 7.3, {0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313}}, {"Lettuce", "1 head", 8.2, {0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449}}, {"Onions", "1 lb.", 3.6, {5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184}}, {"Potatoes", "15 lb.", 34, {14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522}}, {"Spinach", "1 lb.", 8.1, {1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755}}, {"Sweet Potatoes", "1 lb.", 5.1, {9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912}}, {"Peaches (can)", "No. 2 1/2", 16.8, {3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196}}, {"Pears (can)", "No. 2 1/2", 20.4, {3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81}}, {"Pineapple (can)", "No. 2 1/2", 21.3, {2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399}}, {"Asparagus (can)", "No. 2", 27.7, {0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272}}, {"Green Beans (can)", "No. 2", 10, {1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431}}, {"Pork and Beans (can)", "16 oz.", 7.1, {7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0}}, {"Corn (can)", "No. 2", 10.4, {5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218}}, {"Peas (can)", "No. 2", 13.8, {2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370}}, {"Tomatoes (can)", "No. 2", 8.6, {1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253}}, {"Tomato Soup (can)", "10 1/2 oz.", 7.6, {1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862}}, {"Peaches, Dried", "1 lb.", 15.7, {8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57}}, {"Prunes, Dried", "1 lb.", 9, {12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257}}, {"Raisins, Dried", "15 oz.", 9.4, {13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136}}, {"Peas, Dried", "1 lb.", 7.9, {20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0}}, {"Lima Beans, Dried", "1 lb.", 8.9, {17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0}}, {"Navy Beans, Dried", "1 lb.", 5.9, {26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0}}, {"Coffee", "1 lb.", 22.4, {0, 0, 0, 0, 0, 4, 5.1, 50, 0}}, {"Tea", "1/4 lb.", 17.4, {0, 0, 0, 0, 0, 0, 2.3, 42, 0}}, {"Cocoa", "8 oz.", 8.6, {8.7, 237, 3, 72, 0, 2, 11.9, 40, 0}}, {"Chocolate", "8 oz.", 16.2, {8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0}}, {"Sugar", "10 lb.", 51.7, {34.9, 0, 0, 0, 0, 0, 0, 0, 0}}, {"Corn Syrup", "24 oz.", 13.7, {14.7, 0, 0.5, 74, 0, 0, 0, 5, 0}}, {"Molasses", "18 oz.", 13.6, {9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0}}, {"Strawberry Preserves", "1 lb.", 20.5, {6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0}}}; // Create the linear solver with the GLOP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("GLOP")); std::vector<MPVariable*> foods; const double infinity = solver->infinity(); for (const Commodity& commodity : data) { foods.push_back(solver->MakeNumVar(0.0, infinity, commodity.name)); } LOG(INFO) << "Number of variables = " << solver->NumVariables(); // Create the constraints, one per nutrient. std::vector<MPConstraint*> constraints; for (std::size_t i = 0; i < nutrients.size(); ++i) { constraints.push_back( solver->MakeRowConstraint(nutrients[i].second, infinity)); for (std::size_t j = 0; j < data.size(); ++j) { constraints.back()->SetCoefficient(foods[j], data[j].nutrients[i]); } } LOG(INFO) << "Number of constraints = " << solver->NumConstraints(); MPObjective* const objective = solver->MutableObjective(); for (size_t i = 0; i < data.size(); ++i) { objective->SetCoefficient(foods[i], 1); } objective->SetMinimization(); const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(INFO) << "The problem does not have an optimal solution!"; if (result_status == MPSolver::FEASIBLE) { LOG(INFO) << "A potentially suboptimal solution was found"; } else { LOG(INFO) << "The solver could not solve the problem."; return; } } std::vector<double> nutrients_result(nutrients.size()); LOG(INFO) << ""; LOG(INFO) << "Annual Foods:"; for (std::size_t i = 0; i < data.size(); ++i) { if (foods[i]->solution_value() > 0.0) { LOG(INFO) << data[i].name << ": $" << std::to_string(365. * foods[i]->solution_value()); for (std::size_t j = 0; j < nutrients.size(); ++j) { nutrients_result[j] += data[i].nutrients[j] * foods[i]->solution_value(); } } } LOG(INFO) << ""; LOG(INFO) << "Optimal annual price: $" << std::to_string(365. * objective->Value()); LOG(INFO) << ""; LOG(INFO) << "Nutrients per day:"; for (std::size_t i = 0; i < nutrients.size(); ++i) { LOG(INFO) << nutrients[i].first << ": " << std::to_string(nutrients_result[i]) << " (min " << std::to_string(nutrients[i].second) << ")"; } LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << solver->wall_time() << " milliseconds"; LOG(INFO) << "Problem solved in " << solver->iterations() << " iterations"; } } // namespace operations_research int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); absl::SetFlag(&FLAGS_stderrthreshold, 0); operations_research::StiglerDiet(); return EXIT_SUCCESS; }
جاوا
// The Stigler diet problem. package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; import java.util.ArrayList; import java.util.List; /** Stigler diet example. */ public final class StiglerDiet { public static void main(String[] args) { Loader.loadNativeLibraries(); // Nutrient minimums. List<Object[]> nutrients = new ArrayList<>(); nutrients.add(new Object[] {"Calories (kcal)", 3.0}); nutrients.add(new Object[] {"Protein (g)", 70.0}); nutrients.add(new Object[] {"Calcium (g)", 0.8}); nutrients.add(new Object[] {"Iron (mg)", 12.0}); nutrients.add(new Object[] {"Vitamin A (kIU)", 5.0}); nutrients.add(new Object[] {"Vitamin B1 (mg)", 1.8}); nutrients.add(new Object[] {"Vitamin B2 (mg)", 2.7}); nutrients.add(new Object[] {"Niacin (mg)", 18.0}); nutrients.add(new Object[] {"Vitamin C (mg)", 75.0}); List<Object[]> data = new ArrayList<>(); data.add(new Object[] {"Wheat Flour (Enriched)", "10 lb.", 36, new double[] {44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0}}); data.add(new Object[] { "Macaroni", "1 lb.", 14.1, new double[] {11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0}}); data.add(new Object[] {"Wheat Cereal (Enriched)", "28 oz.", 24.2, new double[] {11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0}}); data.add(new Object[] { "Corn Flakes", "8 oz.", 7.1, new double[] {11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0}}); data.add(new Object[] { "Corn Meal", "1 lb.", 4.6, new double[] {36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0}}); data.add(new Object[] { "Hominy Grits", "24 oz.", 8.5, new double[] {28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0}}); data.add( new Object[] {"Rice", "1 lb.", 7.5, new double[] {21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0}}); data.add(new Object[] { "Rolled Oats", "1 lb.", 7.1, new double[] {25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0}}); data.add(new Object[] {"White Bread (Enriched)", "1 lb.", 7.9, new double[] {15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0}}); data.add(new Object[] {"Whole Wheat Bread", "1 lb.", 9.1, new double[] {12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0}}); data.add(new Object[] { "Rye Bread", "1 lb.", 9.1, new double[] {12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0}}); data.add(new Object[] { "Pound Cake", "1 lb.", 24.8, new double[] {8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0}}); data.add(new Object[] { "Soda Crackers", "1 lb.", 15.1, new double[] {12.5, 288, 0.5, 50, 0, 0, 0, 0, 0}}); data.add( new Object[] {"Milk", "1 qt.", 11, new double[] {6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177}}); data.add(new Object[] {"Evaporated Milk (can)", "14.5 oz.", 6.7, new double[] {8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60}}); data.add( new Object[] {"Butter", "1 lb.", 30.8, new double[] {10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0}}); data.add(new Object[] { "Oleomargarine", "1 lb.", 16.1, new double[] {20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0}}); data.add(new Object[] { "Eggs", "1 doz.", 32.6, new double[] {2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0}}); data.add(new Object[] {"Cheese (Cheddar)", "1 lb.", 24.2, new double[] {7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0}}); data.add(new Object[] { "Cream", "1/2 pt.", 14.1, new double[] {3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17}}); data.add(new Object[] { "Peanut Butter", "1 lb.", 17.9, new double[] {15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0}}); data.add(new Object[] { "Mayonnaise", "1/2 pt.", 16.7, new double[] {8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0}}); data.add(new Object[] {"Crisco", "1 lb.", 20.3, new double[] {20.1, 0, 0, 0, 0, 0, 0, 0, 0}}); data.add(new Object[] {"Lard", "1 lb.", 9.8, new double[] {41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0}}); data.add(new Object[] { "Sirloin Steak", "1 lb.", 39.6, new double[] {2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0}}); data.add(new Object[] { "Round Steak", "1 lb.", 36.4, new double[] {2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0}}); data.add( new Object[] {"Rib Roast", "1 lb.", 29.2, new double[] {3.4, 213, 0.1, 33, 0, 0, 2, 0, 0}}); data.add(new Object[] { "Chuck Roast", "1 lb.", 22.6, new double[] {3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0}}); data.add( new Object[] {"Plate", "1 lb.", 14.6, new double[] {8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0}}); data.add(new Object[] {"Liver (Beef)", "1 lb.", 26.8, new double[] {2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525}}); data.add(new Object[] { "Leg of Lamb", "1 lb.", 27.6, new double[] {3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0}}); data.add(new Object[] { "Lamb Chops (Rib)", "1 lb.", 36.6, new double[] {3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0}}); data.add(new Object[] { "Pork Chops", "1 lb.", 30.7, new double[] {3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0}}); data.add(new Object[] { "Pork Loin Roast", "1 lb.", 24.2, new double[] {4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0}}); data.add(new Object[] { "Bacon", "1 lb.", 25.6, new double[] {10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0}}); data.add(new Object[] { "Ham, smoked", "1 lb.", 27.4, new double[] {6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0}}); data.add(new Object[] { "Salt Pork", "1 lb.", 16, new double[] {18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0}}); data.add(new Object[] {"Roasting Chicken", "1 lb.", 30.3, new double[] {1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46}}); data.add(new Object[] { "Veal Cutlets", "1 lb.", 42.3, new double[] {1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0}}); data.add(new Object[] { "Salmon, Pink (can)", "16 oz.", 13, new double[] {5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0}}); data.add(new Object[] { "Apples", "1 lb.", 4.4, new double[] {5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544}}); data.add(new Object[] { "Bananas", "1 lb.", 6.1, new double[] {4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498}}); data.add( new Object[] {"Lemons", "1 doz.", 26, new double[] {1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952}}); data.add(new Object[] { "Oranges", "1 doz.", 30.9, new double[] {2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998}}); data.add(new Object[] { "Green Beans", "1 lb.", 7.1, new double[] {2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862}}); data.add(new Object[] { "Cabbage", "1 lb.", 3.7, new double[] {2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369}}); data.add(new Object[] { "Carrots", "1 bunch", 4.7, new double[] {2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608}}); data.add(new Object[] { "Celery", "1 stalk", 7.3, new double[] {0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313}}); data.add(new Object[] { "Lettuce", "1 head", 8.2, new double[] {0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449}}); data.add(new Object[] { "Onions", "1 lb.", 3.6, new double[] {5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184}}); data.add(new Object[] { "Potatoes", "15 lb.", 34, new double[] {14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522}}); data.add(new Object[] { "Spinach", "1 lb.", 8.1, new double[] {1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755}}); data.add(new Object[] {"Sweet Potatoes", "1 lb.", 5.1, new double[] {9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912}}); data.add(new Object[] {"Peaches (can)", "No. 2 1/2", 16.8, new double[] {3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196}}); data.add(new Object[] { "Pears (can)", "No. 2 1/2", 20.4, new double[] {3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81}}); data.add(new Object[] { "Pineapple (can)", "No. 2 1/2", 21.3, new double[] {2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399}}); data.add(new Object[] {"Asparagus (can)", "No. 2", 27.7, new double[] {0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272}}); data.add(new Object[] { "Green Beans (can)", "No. 2", 10, new double[] {1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431}}); data.add(new Object[] {"Pork and Beans (can)", "16 oz.", 7.1, new double[] {7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0}}); data.add(new Object[] { "Corn (can)", "No. 2", 10.4, new double[] {5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218}}); data.add(new Object[] { "Peas (can)", "No. 2", 13.8, new double[] {2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370}}); data.add(new Object[] { "Tomatoes (can)", "No. 2", 8.6, new double[] {1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253}}); data.add(new Object[] {"Tomato Soup (can)", "10 1/2 oz.", 7.6, new double[] {1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862}}); data.add(new Object[] { "Peaches, Dried", "1 lb.", 15.7, new double[] {8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57}}); data.add(new Object[] { "Prunes, Dried", "1 lb.", 9, new double[] {12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257}}); data.add(new Object[] {"Raisins, Dried", "15 oz.", 9.4, new double[] {13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136}}); data.add(new Object[] { "Peas, Dried", "1 lb.", 7.9, new double[] {20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0}}); data.add(new Object[] {"Lima Beans, Dried", "1 lb.", 8.9, new double[] {17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0}}); data.add(new Object[] {"Navy Beans, Dried", "1 lb.", 5.9, new double[] {26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0}}); data.add(new Object[] {"Coffee", "1 lb.", 22.4, new double[] {0, 0, 0, 0, 0, 4, 5.1, 50, 0}}); data.add(new Object[] {"Tea", "1/4 lb.", 17.4, new double[] {0, 0, 0, 0, 0, 0, 2.3, 42, 0}}); data.add( new Object[] {"Cocoa", "8 oz.", 8.6, new double[] {8.7, 237, 3, 72, 0, 2, 11.9, 40, 0}}); data.add(new Object[] { "Chocolate", "8 oz.", 16.2, new double[] {8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0}}); data.add(new Object[] {"Sugar", "10 lb.", 51.7, new double[] {34.9, 0, 0, 0, 0, 0, 0, 0, 0}}); data.add(new Object[] { "Corn Syrup", "24 oz.", 13.7, new double[] {14.7, 0, 0.5, 74, 0, 0, 0, 5, 0}}); data.add(new Object[] { "Molasses", "18 oz.", 13.6, new double[] {9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0}}); data.add(new Object[] {"Strawberry Preserves", "1 lb.", 20.5, new double[] {6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0}}); // Create the linear solver with the GLOP backend. MPSolver solver = MPSolver.createSolver("GLOP"); if (solver == null) { System.out.println("Could not create solver GLOP"); return; } double infinity = java.lang.Double.POSITIVE_INFINITY; List<MPVariable> foods = new ArrayList<>(); for (int i = 0; i < data.size(); ++i) { foods.add(solver.makeNumVar(0.0, infinity, (String) data.get(i)[0])); } System.out.println("Number of variables = " + solver.numVariables()); MPConstraint[] constraints = new MPConstraint[nutrients.size()]; for (int i = 0; i < nutrients.size(); ++i) { constraints[i] = solver.makeConstraint( (double) nutrients.get(i)[1], infinity, (String) nutrients.get(i)[0]); for (int j = 0; j < data.size(); ++j) { constraints[i].setCoefficient(foods.get(j), ((double[]) data.get(j)[3])[i]); } // constraints.add(constraint); } System.out.println("Number of constraints = " + solver.numConstraints()); MPObjective objective = solver.objective(); for (int i = 0; i < data.size(); ++i) { objective.setCoefficient(foods.get(i), 1); } objective.setMinimization(); final MPSolver.ResultStatus resultStatus = solver.solve(); // Check that the problem has an optimal solution. if (resultStatus != MPSolver.ResultStatus.OPTIMAL) { System.err.println("The problem does not have an optimal solution!"); if (resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.err.println("A potentially suboptimal solution was found."); } else { System.err.println("The solver could not solve the problem."); return; } } // Display the amounts (in dollars) to purchase of each food. double[] nutrientsResult = new double[nutrients.size()]; System.out.println("\nAnnual Foods:"); for (int i = 0; i < foods.size(); ++i) { if (foods.get(i).solutionValue() > 0.0) { System.out.println((String) data.get(i)[0] + ": $" + 365 * foods.get(i).solutionValue()); for (int j = 0; j < nutrients.size(); ++j) { nutrientsResult[j] += ((double[]) data.get(i)[3])[j] * foods.get(i).solutionValue(); } } } System.out.println("\nOptimal annual price: $" + 365 * objective.value()); System.out.println("\nNutrients per day:"); for (int i = 0; i < nutrients.size(); ++i) { System.out.println( nutrients.get(i)[0] + ": " + nutrientsResult[i] + " (min " + nutrients.get(i)[1] + ")"); } System.out.println("\nAdvanced usage:"); System.out.println("Problem solved in " + solver.wallTime() + " milliseconds"); System.out.println("Problem solved in " + solver.iterations() + " iterations"); } private StiglerDiet() {} }
سی شارپ
// The Stigler diet problem. using System; using System.Collections.Generic; using Google.OrTools.LinearSolver; public class StiglerDiet { static void Main() { // Nutrient minimums. (String Name, double Value)[] nutrients = new[] { ("Calories (kcal)", 3.0), ("Protein (g)", 70.0), ("Calcium (g)", 0.8), ("Iron (mg)", 12.0), ("Vitamin A (kIU)", 5.0), ("Vitamin B1 (mg)", 1.8), ("Vitamin B2 (mg)", 2.7), ("Niacin (mg)", 18.0), ("Vitamin C (mg)", 75.0) }; (String Name, String Unit, double Price, double[] Nutrients)[] data = new[] { ("Wheat Flour (Enriched)", "10 lb.", 36, new double[] { 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0 }), ("Macaroni", "1 lb.", 14.1, new double[] { 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0 }), ("Wheat Cereal (Enriched)", "28 oz.", 24.2, new double[] { 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0 }), ("Corn Flakes", "8 oz.", 7.1, new double[] { 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0 }), ("Corn Meal", "1 lb.", 4.6, new double[] { 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0 }), ("Hominy Grits", "24 oz.", 8.5, new double[] { 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0 }), ("Rice", "1 lb.", 7.5, new double[] { 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0 }), ("Rolled Oats", "1 lb.", 7.1, new double[] { 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0 }), ("White Bread (Enriched)", "1 lb.", 7.9, new double[] { 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0 }), ("Whole Wheat Bread", "1 lb.", 9.1, new double[] { 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0 }), ("Rye Bread", "1 lb.", 9.1, new double[] { 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0 }), ("Pound Cake", "1 lb.", 24.8, new double[] { 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0 }), ("Soda Crackers", "1 lb.", 15.1, new double[] { 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0 }), ("Milk", "1 qt.", 11, new double[] { 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177 }), ("Evaporated Milk (can)", "14.5 oz.", 6.7, new double[] { 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60 }), ("Butter", "1 lb.", 30.8, new double[] { 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0 }), ("Oleomargarine", "1 lb.", 16.1, new double[] { 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0 }), ("Eggs", "1 doz.", 32.6, new double[] { 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0 }), ("Cheese (Cheddar)", "1 lb.", 24.2, new double[] { 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0 }), ("Cream", "1/2 pt.", 14.1, new double[] { 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17 }), ("Peanut Butter", "1 lb.", 17.9, new double[] { 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0 }), ("Mayonnaise", "1/2 pt.", 16.7, new double[] { 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0 }), ("Crisco", "1 lb.", 20.3, new double[] { 20.1, 0, 0, 0, 0, 0, 0, 0, 0 }), ("Lard", "1 lb.", 9.8, new double[] { 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0 }), ("Sirloin Steak", "1 lb.", 39.6, new double[] { 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0 }), ("Round Steak", "1 lb.", 36.4, new double[] { 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0 }), ("Rib Roast", "1 lb.", 29.2, new double[] { 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0 }), ("Chuck Roast", "1 lb.", 22.6, new double[] { 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0 }), ("Plate", "1 lb.", 14.6, new double[] { 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0 }), ("Liver (Beef)", "1 lb.", 26.8, new double[] { 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525 }), ("Leg of Lamb", "1 lb.", 27.6, new double[] { 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0 }), ("Lamb Chops (Rib)", "1 lb.", 36.6, new double[] { 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0 }), ("Pork Chops", "1 lb.", 30.7, new double[] { 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0 }), ("Pork Loin Roast", "1 lb.", 24.2, new double[] { 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0 }), ("Bacon", "1 lb.", 25.6, new double[] { 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0 }), ("Ham, smoked", "1 lb.", 27.4, new double[] { 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0 }), ("Salt Pork", "1 lb.", 16, new double[] { 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0 }), ("Roasting Chicken", "1 lb.", 30.3, new double[] { 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46 }), ("Veal Cutlets", "1 lb.", 42.3, new double[] { 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0 }), ("Salmon, Pink (can)", "16 oz.", 13, new double[] { 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0 }), ("Apples", "1 lb.", 4.4, new double[] { 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544 }), ("Bananas", "1 lb.", 6.1, new double[] { 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498 }), ("Lemons", "1 doz.", 26, new double[] { 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952 }), ("Oranges", "1 doz.", 30.9, new double[] { 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998 }), ("Green Beans", "1 lb.", 7.1, new double[] { 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862 }), ("Cabbage", "1 lb.", 3.7, new double[] { 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369 }), ("Carrots", "1 bunch", 4.7, new double[] { 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608 }), ("Celery", "1 stalk", 7.3, new double[] { 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313 }), ("Lettuce", "1 head", 8.2, new double[] { 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449 }), ("Onions", "1 lb.", 3.6, new double[] { 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184 }), ("Potatoes", "15 lb.", 34, new double[] { 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522 }), ("Spinach", "1 lb.", 8.1, new double[] { 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755 }), ("Sweet Potatoes", "1 lb.", 5.1, new double[] { 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912 }), ("Peaches (can)", "No. 2 1/2", 16.8, new double[] { 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196 }), ("Pears (can)", "No. 2 1/2", 20.4, new double[] { 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81 }), ("Pineapple (can)", "No. 2 1/2", 21.3, new double[] { 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399 }), ("Asparagus (can)", "No. 2", 27.7, new double[] { 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272 }), ("Green Beans (can)", "No. 2", 10, new double[] { 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431 }), ("Pork and Beans (can)", "16 oz.", 7.1, new double[] { 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0 }), ("Corn (can)", "No. 2", 10.4, new double[] { 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218 }), ("Peas (can)", "No. 2", 13.8, new double[] { 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370 }), ("Tomatoes (can)", "No. 2", 8.6, new double[] { 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253 }), ("Tomato Soup (can)", "10 1/2 oz.", 7.6, new double[] { 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862 }), ("Peaches, Dried", "1 lb.", 15.7, new double[] { 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57 }), ("Prunes, Dried", "1 lb.", 9, new double[] { 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257 }), ("Raisins, Dried", "15 oz.", 9.4, new double[] { 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136 }), ("Peas, Dried", "1 lb.", 7.9, new double[] { 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0 }), ("Lima Beans, Dried", "1 lb.", 8.9, new double[] { 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0 }), ("Navy Beans, Dried", "1 lb.", 5.9, new double[] { 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0 }), ("Coffee", "1 lb.", 22.4, new double[] { 0, 0, 0, 0, 0, 4, 5.1, 50, 0 }), ("Tea", "1/4 lb.", 17.4, new double[] { 0, 0, 0, 0, 0, 0, 2.3, 42, 0 }), ("Cocoa", "8 oz.", 8.6, new double[] { 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0 }), ("Chocolate", "8 oz.", 16.2, new double[] { 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0 }), ("Sugar", "10 lb.", 51.7, new double[] { 34.9, 0, 0, 0, 0, 0, 0, 0, 0 }), ("Corn Syrup", "24 oz.", 13.7, new double[] { 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0 }), ("Molasses", "18 oz.", 13.6, new double[] { 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0 }), ("Strawberry Preserves", "1 lb.", 20.5, new double[] { 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0 }) }; // Create the linear solver with the GLOP backend. Solver solver = Solver.CreateSolver("GLOP"); if (solver is null) { return; } List<Variable> foods = new List<Variable>(); for (int i = 0; i < data.Length; ++i) { foods.Add(solver.MakeNumVar(0.0, double.PositiveInfinity, data[i].Name)); } Console.WriteLine($"Number of variables = {solver.NumVariables()}"); List<Constraint> constraints = new List<Constraint>(); for (int i = 0; i < nutrients.Length; ++i) { Constraint constraint = solver.MakeConstraint(nutrients[i].Value, double.PositiveInfinity, nutrients[i].Name); for (int j = 0; j < data.Length; ++j) { constraint.SetCoefficient(foods[j], data[j].Nutrients[i]); } constraints.Add(constraint); } Console.WriteLine($"Number of constraints = {solver.NumConstraints()}"); Objective objective = solver.Objective(); for (int i = 0; i < data.Length; ++i) { objective.SetCoefficient(foods[i], 1); } objective.SetMinimization(); Solver.ResultStatus resultStatus = solver.Solve(); // Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); if (resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine("A potentially suboptimal solution was found."); } else { Console.WriteLine("The solver could not solve the problem."); return; } } // Display the amounts (in dollars) to purchase of each food. double[] nutrientsResult = new double[nutrients.Length]; Console.WriteLine("\nAnnual Foods:"); for (int i = 0; i < foods.Count; ++i) { if (foods[i].SolutionValue() > 0.0) { Console.WriteLine($"{data[i].Name}: ${365 * foods[i].SolutionValue():N2}"); for (int j = 0; j < nutrients.Length; ++j) { nutrientsResult[j] += data[i].Nutrients[j] * foods[i].SolutionValue(); } } } Console.WriteLine($"\nOptimal annual price: ${365 * objective.Value():N2}"); Console.WriteLine("\nNutrients per day:"); for (int i = 0; i < nutrients.Length; ++i) { Console.WriteLine($"{nutrients[i].Name}: {nutrientsResult[i]:N2} (min {nutrients[i].Value})"); } Console.WriteLine("\nAdvanced usage:"); Console.WriteLine($"Problem solved in {solver.WallTime()} milliseconds"); Console.WriteLine($"Problem solved in {solver.Iterations()} iterations"); } }