O problema de roteamento de veículos com capacidade (CVRP) é um VRP em que veículos com capacidade de carga limitada precisam retirar ou entregar itens em vários locais. Os itens têm uma quantidade, como peso ou volume, e os veículos têm um capacidade máxima que eles podem carregar. O problema é pegar ou entregar itens pelo menor custo, sem exceder a capacidade dos veículos.
No exemplo a seguir, presumimos que todos os itens estão sendo coletados. O programa que resolve esse problema também funciona se todos os itens forem enviados: Nesse caso, pense na restrição de capacidade que é aplicada os veículos deixam a garagem totalmente carregada. Mas as restrições de capacidade são implementados da mesma forma em ambos os casos.
Exemplo de CVRP
A seguir, descrevemos um exemplo de VRP com restrições de capacidade. O exemplo estende o exemplo anterior de VRP e adiciona o requisitos a seguir. Em cada local há uma demanda correspondente a quantidade do item a ser retirado. Além disso, cada veículo tem um limite capacidade de 15. Não estamos especificando unidades para as demandas ou a capacidade.
A grade abaixo mostra os locais a serem visitados em azul e o local da empresa em pretos. As demandas são mostradas no canto inferior direito de cada local. Consulte Coordenadas de local no VRP para mais detalhes sobre como os locais são definidos.
O problema é encontrar uma atribuição de rotas para veículos que tenham o menor distância total, e de modo que a quantidade total que um veículo carrega nunca excede a capacidade dele.
Resolver o exemplo do CVRP com as ferramentas OR
As seções a seguir explicam como resolver o exemplo de CVRP com as ferramentas OR.
Criar os dados
Os dados deste exemplo incluem os dados dos grupos exemplo de VRP e adiciona o seguinte demandas e capacidades de veículos:
Python
data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15]
C++
const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
Java
public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15};
C#
public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 };
Os novos itens nos dados são:
- Demandas: cada local tem uma demanda correspondente à quantidade. por exemplo, peso ou volume, do item a ser retirado.
- Capacidades: cada veículo tem uma capacidade, a quantidade máxima que o o veículo pode suportar. À medida que um veículo percorre um trajeto, a quantidade total de os itens que ele carrega nunca pode exceder a capacidade dele.
Adicionar o callback de distância
O callback de distância, a função que retorna a distância entre qualquer em dois locais, é definido da mesma maneira que no Exemplo de VRP.
Adicionar o callback de demanda e as restrições de capacidade
Além do callback de distância, o solucionador também exige um callback de demanda , que retorna a demanda em cada local e uma dimensão para a capacidade restrições. O código a seguir os cria.
Python
def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", )
C++
const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
Java
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
C#
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
Ao contrário do callback de distância, que usa um par de localizações como entradas, o
o callback de demanda depende apenas do local (from_node
) da entrega.
Como as restrições de capacidade envolvem o peso da carga de um veículo, uma quantidade que se acumula ao longo do trajeto, precisamos criar uma dimensão para capacidades, semelhante à dimensão de distância no filtro Exemplo de VRP.
Nesse caso, usamos o
AddDimensionWithVehicleCapacity
que usa um vetor de capacidades.
Como todas as capacidades de veículos neste exemplo são iguais, você poderia usar
AddDimension
, que usa um único limite superior para todas as quantidades de veículos. Mas
AddDimensionWithVehicleCapacity
lida com o caso mais geral, em que
veículos diferentes têm capacidades distintas.
Problemas com vários tipos e capacidades de carga
Em CVRPs mais complexos, cada veículo pode transportar vários tipos diferentes de carga , com capacidade máxima para cada tipo. Por exemplo, um caminhão de entrega de combustível pode transportar vários tipos de combustível, usando vários tanques com capacidades diferentes. Para lidar com problemas como esses, basta criar um callback de capacidade e dimensão diferentes para cada tipo de carga (fazendo atribua nomes exclusivos a eles).
Adicionar a impressora da solução
A impressora da solução exibe o trajeto de cada veículo, junto com carga cumulativa: a quantidade total que o veículo está carregando na parada no rotas de prioridade mais alta.
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); }
Função principal
A função principal deste exemplo é muito semelhante à função exemplo do TSP, mas também adiciona a dimensão de demandas e capacidade descrita acima.
Como executar o programa
O programa completo é mostrado na próxima seção. Quando você executa o programa, ele mostra a seguinte saída:
Objective: 6208 Route for vehicle 0: 0 Load(0) -> 4 Load(0) -> 3 Load(4) -> 1 Load(6) -> 7 Load(7) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 1: 0 Load(0) -> 14 Load(0) -> 16 Load(4) -> 10 Load(12) -> 9 Load(14) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 2: 0 Load(0) -> 12 Load(0) -> 11 Load(2) -> 15 Load(3) -> 13 Load(11) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 3: 0 Load(0) -> 8 Load(0) -> 2 Load(8) -> 6 Load(9) -> 5 Load(13) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Total Distance of all routes: 6208m Total Load of all routes: 60
Para cada local em um trajeto, a saída mostra:
- O índice do local.
A carga total carregada pelo veículo quando ele sai do local.
Os trajetos são mostrados abaixo.
Programas completos
Os programas completos para o problema de rota de veículos capacitados são mostrados abaixo.
Python
"""Capacited Vehicles Routing Problem (CVRP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}") def main(): """Solve the CVRP problem.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Capacity constraint. def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", ) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) search_parameters.local_search_metaheuristic = ( routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH ) search_parameters.time_limit.FromSeconds(1) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <vector> #include "google/protobuf/duration.pb.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15}; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpCapacity() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Capacity constraint. const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters(); search_parameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); search_parameters.set_local_search_metaheuristic( LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH); search_parameters.mutable_time_limit()->set_seconds(1); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(search_parameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpCapacity(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.LocalSearchMetaheuristic; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import com.google.protobuf.Duration; import java.util.logging.Logger; /** Minimal VRP. */ public final class VrpCapacity { private static final Logger logger = Logger.getLogger(VrpCapacity.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15}; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH) .setTimeLimit(Duration.newBuilder().setSeconds(1).build()) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } private VrpCapacity() {} }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; using Google.Protobuf.WellKnownTypes; // Duration /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpCapacity { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch; searchParameters.TimeLimit = new Duration { Seconds = 1 }; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
Há vários exemplos de problemas de roteamento de veículos com outros tipos no GitHub (procure exemplos que tenham "vrp" no nome).
O que acontece se um problema não tiver solução?
Um problema de roteamento com restrições, como um CVRP, pode não ter uma resposta viável solução, por exemplo, se a quantidade total dos itens sendo transportado excede a capacidade total dos veículos. Se você tentar resolver esses o solucionador, o solucionador pode executar uma pesquisa exaustiva que demora tanto em algum momento você terá que desistir e interromper o programa.
Normalmente, isso não é um problema. Mas aqui estão algumas maneiras de evitar programa de execução por muito tempo quando um problema não tem solução:
- Defina um limite no , que interrompe a pesquisa mesmo que nenhuma solução tenha sido encontrada. No entanto, tenha em mente que, se o problema tiver uma solução que exija uma pesquisa demorada, o programa pode atingir o limite de tempo antes de encontrar a solução.
- Defina punições para o abandono de visitas aos locais. Isso permite que o solucionador retornar uma "solução" que não visite todos os locais, caso o problema seja inviável. Consulte Penalizações e desistências de visitas.
Em geral, pode ser difícil dizer se um determinado problema tem uma solução. Mesmo para um CVRP em que a demanda total não exceda a capacidade total, determinando se todos os itens que vão caber nos veículos é uma versão do problema com várias mochilas.