ปัญหาเส้นทางยานพาหนะที่ใช้ระบบขับเคลื่อนอัตโนมัติ (CVRP) คือ VRP ที่พาหนะที่มี ความสามารถในการขนส่งที่จำกัดต้องไปรับหรือจัดส่งสินค้าในสถานที่ต่างๆ สินค้ามีจํานวน เช่น น้ำหนักหรือปริมาตร และยานพาหนะมีปริมาณ ความจุสูงสุดที่รองรับ ปัญหาคือการรับหรือจัดส่ง ประหยัดค่าใช้จ่ายน้อยที่สุด โดยไม่ต้องเกินความจุของยานพาหนะ
ในตัวอย่างต่อไปนี้ เราสมมติว่ามีการหยิบสินค้าทั้งหมด โปรแกรมที่แก้ไขปัญหานี้ยังทำงานเมื่อมีการนำส่งสินค้าทั้งหมดด้วย ดังนี้ ในกรณีนี้ คุณสามารถนึกถึงข้อจำกัดด้านความจุเมื่อมีการใช้ รถจะออกจากสถานีโหลดเต็ม แต่ข้อจำกัดด้านความจุ มีการใช้งานด้วยวิธีเดียวกันในทั้ง 2 กรณี
ตัวอย่าง CVRP
ต่อไป เราจะอธิบายตัวอย่างของ VRP ที่มีข้อจำกัดด้านความจุ ตัวอย่าง ขยายตัวอย่าง VRP ก่อนหน้านี้ และเพิ่ม ตามข้อกำหนดต่อไปนี้ ในแต่ละสถานที่ มีความต้องการที่สอดคล้องกับ จำนวนสินค้าที่จะรับ นอกจากนี้ ยานพาหนะแต่ละคันมีขีดจำกัด ความจุ 15 ใบ (เราไม่ได้ระบุหน่วยสำหรับความต้องการหรือความจุ)
ตารางด้านล่างแสดงสถานที่ตั้งที่จะเข้าชมเป็นสีน้ำเงิน และสถานที่ตั้งบริษัทใน สีดำ ความต้องการจะแสดงอยู่ที่ด้านขวาล่างของแต่ละสถานที่ โปรดดู พิกัดของตำแหน่งใน VRP สำหรับรายละเอียดเพิ่มเติมเกี่ยวกับวิธีกำหนดตำแหน่งที่ตั้ง
ปัญหาคือค้นหาการกำหนดเส้นทางให้กับยานพาหนะที่มีระยะทางสั้นที่สุด ระยะทางรวม กล่าวคือ ปริมาณรวมของยานพาหนะที่บรรทุกยานพาหนะไม่ได้ เกินขีดจำกัด
การแก้โจทย์ตัวอย่าง CVRP ด้วย OR-Tools
ส่วนต่อไปนี้จะอธิบายวิธีแก้ไขตัวอย่าง CVRP ด้วย OR-Tools
สร้างข้อมูล
ข้อมูลสำหรับตัวอย่างนี้มีข้อมูลใน ตัวอย่าง VRP และเพิ่มข้อมูลต่อไปนี้ ความต้องการและความจุยานพาหนะ
Python
data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15]
C++
const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
Java
public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15};
C#
public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 };
รายการใหม่ในข้อมูลได้แก่
- ความต้องการ: สถานที่แต่ละแห่งมีความต้องการที่สอดคล้องกับปริมาณ กล่าวคือ เช่น น้ำหนักหรือปริมาณของสินค้าที่จะรับสินค้า
- ความจุ: ยานพาหนะแต่ละคันมีความจุ: จำนวนสูงสุดที่ ที่จอดได้ ขณะที่ยานพาหนะเคลื่อนที่ไปตามเส้นทาง ปริมาณรวมของ สิ่งที่บรรทุกอยู่จะมีขนาดไม่เกินความจุ
เพิ่ม Callback ของระยะทาง
Callback ระยะทาง — ฟังก์ชันที่แสดงระยะทางระหว่าง ตำแหน่ง 2 แห่ง ได้รับการกำหนดในลักษณะเดียวกับก่อนหน้านี้ ตัวอย่าง VRP
เพิ่ม Callback ของดีมานด์และข้อจำกัดด้านความจุ
นอกจาก Callback ระยะทางแล้ว เครื่องมือแก้โจทย์ยังต้องมี Callback แบบดีมานด์ด้วย ซึ่งจะแสดงความต้องการสำหรับแต่ละตำแหน่ง และแสดงมิติข้อมูลสำหรับความจุ ข้อจำกัด โค้ดต่อไปนี้จะสร้างข้อมูลดังกล่าว
Python
def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", )
C++
const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
Java
final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
C#
int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity");
ซึ่งต่างจาก Callback ระยะทางที่จะนำตำแหน่ง 2 ตำแหน่งเป็นอินพุต
ความต้องการการเรียกกลับจะขึ้นอยู่กับตำแหน่ง (from_node
) ของการแสดงโฆษณาเท่านั้น
เนื่องจากข้อจำกัดด้านความจุเกี่ยวข้องกับน้ำหนักบรรทุกของยานพาหนะ ที่บรรทุก — ปริมาณสะสมตลอดเส้นทาง — เราต้อง สร้างมิติข้อมูลสำหรับความจุ กับมิติข้อมูลระยะทางก่อนหน้านี้ ตัวอย่าง VRP
ในกรณีนี้ เราจะใช้
AddDimensionWithVehicleCapacity
ซึ่งจะใช้เวกเตอร์ของความจุ
เนื่องจากความจุทั้งหมดของยานพาหนะในตัวอย่างนี้เหมือนกัน คุณสามารถใช้
AddDimension
ซึ่งจะใช้ขอบเขตบนของแถวสำหรับยานพาหนะทุกชนิด แต่
AddDimensionWithVehicleCapacity
จะจัดการกรณีทั่วๆ ไปซึ่ง
ยานพาหนะแต่ละคันมีความจุแตกต่างกัน
ปัญหาเกี่ยวกับประเภทสินค้าและความจุหลายอย่าง
ใน CVRP ที่ซับซ้อนยิ่งขึ้น ยานพาหนะแต่ละคันอาจมีสินค้าหลายประเภท ที่มีขีดจำกัดสูงสุดสำหรับแต่ละประเภท ตัวอย่างเช่น รถบรรทุกส่งน้ำมันอาจขนส่งเชื้อเพลิงหลายประเภท โดยใช้ ถังหลายใบที่มีความจุต่างกัน ในการจัดการปัญหาเหล่านี้ โปรด สร้างการเรียกกลับด้านความจุและขนาดที่แตกต่างกันสำหรับสินค้าแต่ละประเภท ( อย่าลืมตั้งชื่อที่ไม่ซ้ำกัน)
เพิ่มเครื่องพิมพ์โซลูชัน
เครื่องพิมพ์โซลูชันจะแสดงเส้นทางของยานพาหนะแต่ละคัน พร้อมกับ น้ำหนักบรรทุกสะสม: จำนวนเงินรวมที่ยานพาหนะขนส่งอยู่ ณ จุดแวะ เส้นทาง
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); }
ฟังก์ชันหลัก
ฟังก์ชันหลักสำหรับตัวอย่างนี้คล้ายกับฟังก์ชันสำหรับ ตัวอย่าง TSP แต่ยังเพิ่ม มิติข้อมูลของความต้องการและความจุตามที่อธิบายไว้ข้างต้น
การใช้งานโปรแกรม
โปรแกรมฉบับเต็มจะแสดงในส่วนถัดไป เมื่อคุณเรียกใช้โปรแกรม โปรแกรมจะแสดงเอาต์พุตต่อไปนี้
Objective: 6208 Route for vehicle 0: 0 Load(0) -> 4 Load(0) -> 3 Load(4) -> 1 Load(6) -> 7 Load(7) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 1: 0 Load(0) -> 14 Load(0) -> 16 Load(4) -> 10 Load(12) -> 9 Load(14) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 2: 0 Load(0) -> 12 Load(0) -> 11 Load(2) -> 15 Load(3) -> 13 Load(11) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Route for vehicle 3: 0 Load(0) -> 8 Load(0) -> 2 Load(8) -> 6 Load(9) -> 5 Load(13) -> 0 Load(15) Distance of the route: 1552m Load of the route: 15 Total Distance of all routes: 6208m Total Load of all routes: 60
สำหรับแต่ละตำแหน่งในเส้นทาง เอาต์พุตจะแสดงสิ่งต่อไปนี้
- ดัชนีของสถานที่ตั้ง
น้ำหนักบรรทุกรวมของยานพาหนะเมื่อออกเดินทางจากสถานที่ดังกล่าว
เส้นทางจะปรากฏที่ด้านล่าง
จบโปรแกรม
โปรแกรมทั้งหมดสำหรับปัญหาการเดินรถในความจุจะแสดงที่ด้านล่าง
Python
"""Capacited Vehicles Routing Problem (CVRP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data["vehicle_capacities"] = [15, 15, 15, 15] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") total_distance = 0 total_load = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 route_load = 0 while not routing.IsEnd(index): node_index = manager.IndexToNode(index) route_load += data["demands"][node_index] plan_output += f" {node_index} Load({route_load}) -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n" plan_output += f"Distance of the route: {route_distance}m\n" plan_output += f"Load of the route: {route_load}\n" print(plan_output) total_distance += route_distance total_load += route_load print(f"Total distance of all routes: {total_distance}m") print(f"Total load of all routes: {total_load}") def main(): """Solve the CVRP problem.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Capacity constraint. def demand_callback(from_index): """Returns the demand of the node.""" # Convert from routing variable Index to demands NodeIndex. from_node = manager.IndexToNode(from_index) return data["demands"][from_node] demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0, # null capacity slack data["vehicle_capacities"], # vehicle maximum capacities True, # start cumul to zero "Capacity", ) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) search_parameters.local_search_metaheuristic = ( routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH ) search_parameters.time_limit.FromSeconds(1) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <vector> #include "google/protobuf/duration.pb.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<int64_t> demands{ 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8, }; const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15}; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t total_distance = 0; int64_t total_load = 0; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance = 0; int64_t route_load = 0; std::stringstream route; while (!routing.IsEnd(index)) { const int node_index = manager.IndexToNode(index).value(); route_load += data.demands[node_index]; route << node_index << " Load(" << route_load << ") -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; LOG(INFO) << "Load of the route: " << route_load; total_distance += route_distance; total_load += route_load; } LOG(INFO) << "Total distance of all routes: " << total_distance << "m"; LOG(INFO) << "Total load of all routes: " << total_load; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpCapacity() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Capacity constraint. const int demand_callback_index = routing.RegisterUnaryTransitCallback( [&data, &manager](const int64_t from_index) -> int64_t { // Convert from routing variable Index to demand NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); return data.demands[from_node]; }); routing.AddDimensionWithVehicleCapacity( demand_callback_index, // transit callback index int64_t{0}, // null capacity slack data.vehicle_capacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters(); search_parameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); search_parameters.set_local_search_metaheuristic( LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH); search_parameters.mutable_time_limit()->set_seconds(1); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(search_parameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpCapacity(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.LocalSearchMetaheuristic; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import com.google.protobuf.Duration; import java.util.logging.Logger; /** Minimal VRP. */ public final class VrpCapacity { private static final Logger logger = Logger.getLogger(VrpCapacity.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8}; public final long[] vehicleCapacities = {15, 15, 15, 15}; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective: " + solution.objectiveValue()); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; long routeLoad = 0; String route = ""; while (!routing.isEnd(index)) { long nodeIndex = manager.indexToNode(index); routeLoad += data.demands[(int) nodeIndex]; route += nodeIndex + " Load(" + routeLoad + ") -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } route += manager.indexToNode(routing.end(i)); logger.info(route); logger.info("Distance of the route: " + routeDistance + "m"); totalDistance += routeDistance; totalLoad += routeLoad; } logger.info("Total distance of all routes: " + totalDistance + "m"); logger.info("Total load of all routes: " + totalLoad); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); return data.demands[fromNode]; }); routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.vehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH) .setTimeLimit(Duration.newBuilder().setSeconds(1).build()) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } private VrpCapacity() {} }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; using Google.Protobuf.WellKnownTypes; // Duration /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpCapacity { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 }; public long[] VehicleCapacities = { 15, 15, 15, 15 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long totalDistance = 0; long totalLoad = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; long routeLoad = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { long nodeIndex = manager.IndexToNode(index); routeLoad += data.Demands[nodeIndex]; Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); totalDistance += routeDistance; totalLoad += routeLoad; } Console.WriteLine("Total distance of all routes: {0}m", totalDistance); Console.WriteLine("Total load of all routes: {0}m", totalLoad); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Capacity constraint. int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) => { // Convert from routing variable Index to // demand NodeIndex. var fromNode = manager.IndexToNode(fromIndex); return data.Demands[fromNode]; }); routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack data.VehicleCapacities, // vehicle maximum capacities true, // start cumul to zero "Capacity"); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch; searchParameters.TimeLimit = new Duration { Seconds = 1 }; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
มีตัวอย่างของปัญหาเกี่ยวกับเส้นทางรถยนต์ในประเภทอื่นๆ ข้อจำกัดใน GitHub (ดูตัวอย่างที่มีคำว่า "vrp" อยู่ในชื่อ)
จะเกิดอะไรขึ้นหากปัญหาไม่มีวิธีแก้ไข
ปัญหาการกําหนดเส้นทางที่มีข้อจํากัด เช่น CVRP อาจไม่สามารถทำได้ โซลูชัน — ตัวอย่างเช่น หากปริมาณรวมของสินค้า ที่ขนส่งเกินความจุรวมของยานพาหนะ หากคุณพยายามแก้โจทย์ เครื่องมือแก้โจทย์อาจทำการค้นหาอย่างละเอียด ซึ่งใช้เวลามาก สุดท้ายคุณก็ต้องยอมแพ้และขัดจังหวะโปรแกรม
โดยทั่วไปแล้วสิ่งนี้จะไม่เป็นปัญหา แต่คุณมี 2 วิธีในการป้องกันไม่ให้ ทำงานเป็นเวลานานเมื่อปัญหาไม่มีทางแก้ได้
- ตั้งขีดจำกัดเวลาใน ซึ่งจะหยุดการค้นหาแม้ว่าจะไม่พบโซลูชันก็ตาม อย่างไรก็ตาม โปรดจำไว้ว่า หากปัญหามีวิธีแก้ปัญหาที่ต้องใช้การค้นหายาวๆ โปรแกรมอาจถึงกำหนดเวลาสิ้นสุดก่อนที่จะหาทางแก้ไข
- กำหนดบทลงโทษสำหรับการหยุดเข้าชมสถานที่ ซึ่งช่วยให้เครื่องมือแก้โจทย์ แสดง "โซลูชัน" ที่ไม่ได้เยี่ยมชมทุกสถานที่ในกรณีที่เกิดปัญหา ที่ไม่สามารถเป็นไปได้ ดูการลงโทษและการเข้าชมที่ลดลง
โดยทั่วไปแล้ว เป็นเรื่องยากที่จะบอกว่าปัญหาหนึ่งๆ มีวิธีแก้ไขหรือไม่ แม้แต่สำหรับ CVRP ที่ความต้องการโดยรวมไม่เกินความจุทั้งหมดเพื่อพิจารณาว่า สินค้าทั้งหมดจะพอดีกับยานพาหนะ เป็นเวอร์ชันหนึ่งของ ปัญหาหลายอย่าง