Problème d'itinéraire du véhicule avec les fenêtres de temps

De nombreux problèmes de calcul d'itinéraire des véhicules impliquent de planifier des visites chez les clients qui ne sont disponibles qu'à des horaires spécifiques.

On parle alors de problèmes d'itinéraire de véhicule avec des fenêtres temporelles (VRPTW).

Exemple VRPTW

Sur cette page, nous allons vous présenter un exemple de résolution d'un problème de données d'incidents (VRPTW). Étant donné que le problème implique des fenêtres temporelles, les données incluent une matrice temporelle qui contient les temps de trajet entre les lieux (plutôt qu'une matrice de distances comme dans les exemples précédents).

Le diagramme ci-dessous présente les lieux à visiter en bleu et le dépôt en noir. Les périodes sont affichées au-dessus de chaque lieu. Pour en savoir plus sur la définition des emplacements, consultez la section Coordonnées des lieux dans la section "VRP".

L'objectif est de minimiser le temps de trajet total des véhicules.

Résoudre l'exemple VRPTW avec OR-Tools

Les sections suivantes décrivent comment résoudre l'exemple VRPTW avec les outils OU.

Créer les données

La fonction suivante crée les données pour le problème.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data
Les données sont constituées des éléments suivants :
  • data['time_matrix']: tableau des temps de trajet entre des lieux. Notez que cela diffère des exemples précédents, qui utilisent une matrice des distances. Si tous les véhicules roulent à la même vitesse, vous obtiendrez la même solution si vous utilisez une matrice des distances ou une matrice temporelle, car les distances sont un multiple constant des temps de trajet.
  • data['time_windows']: tableau des périodes pour les établissements, que vous pouvez considérer comme des heures demandées pour une visite. Les véhicules doivent se rendre dans un lieu donné dans les délais impartis.
  • data['num_vehicles']: nombre de véhicules dans le parc
  • data['depot']: index du dépôt.

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};
Les données sont constituées des éléments suivants :
  • time_matrix: tableau des temps de trajet entre des lieux. Notez que cela diffère des exemples précédents, qui utilisent une matrice des distances. Si tous les véhicules roulent à la même vitesse, vous obtiendrez la même solution si vous utilisez une matrice des distances ou une matrice temporelle, car les distances sont un multiple constant des temps de trajet.
  • time_windows: tableau des périodes pour les établissements, que vous pouvez considérer comme des heures demandées pour une visite. Les véhicules doivent se rendre dans un lieu donné dans les délais impartis.
  • num_vehicles: nombre de véhicules dans le parc
  • depot: index du dépôt.

Java

static class DataModel {
  public final long[][] timeMatrix = {
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  public final long[][] timeWindows = {
      {0, 5}, // depot
      {7, 12}, // 1
      {10, 15}, // 2
      {16, 18}, // 3
      {10, 13}, // 4
      {0, 5}, // 5
      {5, 10}, // 6
      {0, 4}, // 7
      {5, 10}, // 8
      {0, 3}, // 9
      {10, 16}, // 10
      {10, 15}, // 11
      {0, 5}, // 12
      {5, 10}, // 13
      {7, 8}, // 14
      {10, 15}, // 15
      {11, 15}, // 16
  };
  public final int vehicleNumber = 4;
  public final int depot = 0;
}
Les données sont constituées des éléments suivants :
  • timeMatrix: tableau des temps de trajet entre des lieux. Notez que cela diffère des exemples précédents, qui utilisent une matrice des distances. Si tous les véhicules roulent à la même vitesse, vous obtiendrez la même solution si vous utilisez une matrice des distances ou une matrice temporelle, car les distances sont un multiple constant des temps de trajet.
  • timeWindows: tableau des périodes pour les établissements, que vous pouvez considérer comme des heures demandées pour une visite. Les véhicules doivent se rendre dans un lieu donné dans les délais impartis.
  • vehicleNumber: nombre de véhicules dans le parc
  • depot: index du dépôt.

C#

class DataModel
{
    public long[,] TimeMatrix = {
        { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
        { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
        { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
        { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
        { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
        { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
        { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
        { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
        { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
        { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
        { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
        { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
        { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
        { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
        { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
        { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
        { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
    };
    public long[,] TimeWindows = {
        { 0, 5 },   // depot
        { 7, 12 },  // 1
        { 10, 15 }, // 2
        { 16, 18 }, // 3
        { 10, 13 }, // 4
        { 0, 5 },   // 5
        { 5, 10 },  // 6
        { 0, 4 },   // 7
        { 5, 10 },  // 8
        { 0, 3 },   // 9
        { 10, 16 }, // 10
        { 10, 15 }, // 11
        { 0, 5 },   // 12
        { 5, 10 },  // 13
        { 7, 8 },   // 14
        { 10, 15 }, // 15
        { 11, 15 }, // 16
    };
    public int VehicleNumber = 4;
    public int Depot = 0;
};
Les données sont constituées des éléments suivants :
  • TimeMatrix: tableau des temps de trajet entre des lieux. Notez que cela diffère des exemples précédents, qui utilisent une matrice des distances. Si tous les véhicules roulent à la même vitesse, vous obtiendrez la même solution si vous utilisez une matrice des distances ou une matrice temporelle, car les distances sont un multiple constant des temps de trajet.
  • TimeWindows: tableau des périodes pour les établissements, que vous pouvez considérer comme des heures demandées pour une visite. Les véhicules doivent se rendre dans un lieu donné dans les délais impartis.
  • VehicleNumber: nombre de véhicules dans le parc
  • Depot: index du dépôt.

Heure de rappel

La fonction suivante crée le rappel de l'heure et le transmet au résolveur. Il définit également les coûts de l'arc, qui définissent le coût du déplacement, comme étant les temps de trajet entre les emplacements.

Python

def time_callback(from_index, to_index):
    """Returns the travel time between the two nodes."""
    # Convert from routing variable Index to time matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data["time_matrix"][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(time_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

const int transit_callback_index = routing.RegisterTransitCallback(
    [&data, &manager](const int64_t from_index,
                      const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to time matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return data.time_matrix[from_node][to_node];
    });
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

Java

final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return data.timeMatrix[fromNode][toNode];
    });
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

C#

int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to time
                                                               // matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return data.TimeMatrix[fromNode, toNode];
                                                           });
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

Ajouter des contraintes de période

Le code suivant ajoute des contraintes de période pour tous les lieux.

Python

time = "Time"
routing.AddDimension(
    transit_callback_index,
    30,  # allow waiting time
    30,  # maximum time per vehicle
    False,  # Don't force start cumul to zero.
    time,
)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
    index = routing.Start(vehicle_id)
    time_dimension.CumulVar(index).SetRange(
        data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
    )
for i in range(data["num_vehicles"]):
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i))
    )
    routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

C++

const std::string time = "Time";
routing.AddDimension(transit_callback_index,  // transit callback index
                     int64_t{30},             // allow waiting time
                     int64_t{30},             // maximum time per vehicle
                     false,  // Don't force start cumul to zero
                     time);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
// Add time window constraints for each location except depot.
for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.num_vehicles; ++i) {
  const int64_t index = routing.Start(i);
  time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                           data.time_windows[0].second);
}
for (int i = 0; i < data.num_vehicles; ++i) {
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.Start(i)));
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.End(i)));
}

Java

routing.addDimension(transitCallbackIndex, // transit callback
    30, // allow waiting time
    30, // vehicle maximum capacities
    false, // start cumul to zero
    "Time");
RoutingDimension timeDimension = routing.getMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.vehicleNumber; ++i) {
  long index = routing.start(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
}
for (int i = 0; i < data.vehicleNumber; ++i) {
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
}

C#

routing.AddDimension(transitCallbackIndex, // transit callback
                     30,                   // allow waiting time
                     30,                   // vehicle maximum capacities
                     false,                // start cumul to zero
                     "Time");
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.VehicleNumber; ++i)
{
    long index = routing.Start(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
}
for (int i = 0; i < data.VehicleNumber; ++i)
{
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
}

Le code crée une dimension pour le temps de trajet des véhicules, semblable aux dimensions concernant la distance ou les demandes des exemples précédents. Les dimensions permettent de suivre les quantités accumulées sur l'itinéraire d'un véhicule. Dans le code ci-dessus, time_dimension.CumulVar(index) correspond au temps de trajet cumulé lorsqu'un véhicule arrive à l'établissement associé au index donné.

La dimension est créée à l'aide de la méthode AddDimension, qui comporte les arguments suivants:

  • Index du rappel du temps de trajet: transit_callback_index
  • Limite supérieure de la marge (temps d'attente sur chaque site): 30. Bien que la valeur ait été définie sur 0 dans l'exemple CVRP, le format VRPTW doit permettre un temps d'attente positif en raison des contraintes de fenêtre de temps.
  • Limite supérieure pour le temps total sur l'itinéraire de chaque véhicule: 30
  • Variable booléenne indiquant si la variable cumulative est définie sur zéro au début de l'itinéraire de chaque véhicule.
  • Nom de la dimension.

Ensuite, les lignes

Python

for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])

C++

for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}

Java

for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}

C#

for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}

exiger qu'un véhicule se rende dans un lieu pendant les horaires correspondants.

Définir les paramètres de recherche

Le code suivant définit les paramètres de recherche par défaut et une méthode heuristique pour trouver la première solution:

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
    FirstSolutionStrategy::PATH_CHEAPEST_ARC);

Java

RoutingSearchParameters searchParameters =
    main.defaultRoutingSearchParameters()
        .toBuilder()
        .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
        .build();

C#

RoutingSearchParameters searchParameters =
    operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

Ajouter l'imprimante de la solution

La fonction qui affiche la solution est présentée ci-dessous.

Python

def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective : " + solution.objectiveValue());
  // Inspect solution.
  RoutingDimension timeDimension = routing.getMutableDimension("Time");
  long totalTime = 0;
  for (int i = 0; i < data.vehicleNumber; ++i) {
    long index = routing.start(i);
    logger.info("Route for Vehicle " + i + ":");
    String route = "";
    while (!routing.isEnd(index)) {
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ") -> ";
      index = solution.value(routing.nextVar(index));
    }
    IntVar timeVar = timeDimension.cumulVar(index);
    route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
        + solution.max(timeVar) + ")";
    logger.info(route);
    logger.info("Time of the route: " + solution.min(timeVar) + "min");
    totalTime += solution.min(timeVar);
  }
  logger.info("Total time of all routes: " + totalTime + "min");
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                          in Assignment solution)
{
    Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

    // Inspect solution.
    RoutingDimension timeDimension = routing.GetMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.VehicleNumber; ++i)
    {
        Console.WriteLine("Route for Vehicle {0}:", i);
        var index = routing.Start(i);
        while (routing.IsEnd(index) == false)
        {
            var timeVar = timeDimension.CumulVar(index);
            Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                          solution.Max(timeVar));
            index = solution.Value(routing.NextVar(index));
        }
        var endTimeVar = timeDimension.CumulVar(index);
        Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                          solution.Max(endTimeVar));
        Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
        totalTime += solution.Min(endTimeVar);
    }
    Console.WriteLine("Total time of all routes: {0}min", totalTime);
}

La solution affiche les itinéraires des véhicules et la fenêtre de la solution à chaque emplacement, comme expliqué dans la section suivante.

Fenêtres de solution

La fenêtre de solution d'un emplacement correspond à l'intervalle de temps pendant lequel un véhicule doit arriver afin de respecter les horaires.La fenêtre de la solution est contenue dans, et généralement inférieure, à la période de contrainte de l'emplacement.

Dans la fonction d'impression de la solution ci-dessus, la fenêtre de la solution est renvoyée par (assignment.Min(time_var), assignment.Max(time_var), où time_var = time_dimension.CumulVar(index) correspond au temps de trajet cumulé du véhicule à cet emplacement.

Si les valeurs minimale et maximale de time_var sont identiques, la fenêtre de la solution est à un moment précis, ce qui signifie que le véhicule doit partir de cet emplacement dès son arrivée. En revanche, si la valeur minimale est inférieure au maximum, le véhicule peut attendre avant de partir.

La section Exécuter le programme décrit les fenêtres de solution pour cet exemple.

Trouver une solution

La fonction principale de cet exemple est semblable à celle de l'exemple TSP.

Python

solution = routing.SolveWithParameters(search_parameters)

C++

const Assignment* solution = routing.SolveWithParameters(searchParameters);

Java

Assignment solution = routing.solveWithParameters(searchParameters);

C#

Assignment solution = routing.SolveWithParameters(searchParameters);

Exécuter le programme

Lorsque vous exécutez le programme, il affiche la sortie suivante:

Route for vehicle 0:
 0 Time(0,0) ->  9 Time(2,3) ->  14 Time(7,8) -> 16 Time(11,11) ->  0 Time(18,18)
Time of the route: 18min

Route for vehicle 1:
 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24)
Time of the route: 24min

Route for vehicle 2:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 3:
 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) ->
 0 Time(20,20)
Time of the route: 20min

Total time of all routes: 82min

Pour chaque point géographique d'un itinéraire, Time(a,b) correspond à la fenêtre de la solution: le véhicule qui s'y rend doit le faire dans cet intervalle de temps pour respecter les horaires.

À titre d'exemple, examinez la portion de l'itinéraire suivante pour le véhicule 0.

0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)

À l'emplacement 9, la fenêtre de la solution est Time(2,3), ce qui signifie que le véhicule doit y arriver entre les points 2 et 3. Notez que la fenêtre de solution est contenue dans la fenêtre temporelle de la contrainte à l'emplacement (0,&nbsp;3) indiqué dans les données du problème. La fenêtre de solution commence à l'heure 2, car il faut deux unités de temps (entrée 0, 9 de la matrice temporelle) pour se rendre du dépôt à l'emplacement 9.

Pourquoi le véhicule peut-il partir de l'emplacement 9 entre 2 et 3 ? En effet, étant donné que le trajet entre le lieu 9 et le lieu 14 est de 3, si le véhicule part avant 3 heures, il arrivera à l'emplacement 14 avant l'heure 6, ce qui est trop tôt pour être visité. Le véhicule doit donc attendre quelque part, par exemple, le conducteur peut décider d'attendre à l'emplacement 9 jusqu'à l'heure 3 sans retarder la fin de l'itinéraire.

Vous avez peut-être remarqué que certaines fenêtres de solution (par exemple, aux emplacements 9 et 14) ont des heures de début et de fin différentes, mais d'autres (par exemple, sur les itinéraires 2 et 3) ont les mêmes heures de début et de fin. Dans le premier cas, les véhicules peuvent attendre la fin de la fenêtre avant de partir, tandis que dans le second cas, ils doivent partir dès leur arrivée.

Enregistrer les fenêtres de solution dans une liste ou un tableau

La section TSP explique comment enregistrer les routes dans une solution dans une liste ou un tableau. Pour un VRPTW, vous pouvez également enregistrer les fenêtres de la solution. Les fonctions ci-dessous enregistrent les fenêtres de solution dans une liste (Python) ou un tableau (C++).

Python

def get_cumul_data(solution, routing, dimension):
  """Get cumulative data from a dimension and store it in an array."""
  # Returns an array cumul_data whose i,j entry contains the minimum and
  # maximum of CumulVar for the dimension at the jth node on route :
  # - cumul_data[i][j][0] is the minimum.
  # - cumul_data[i][j][1] is the maximum.

  cumul_data = []
  for route_nbr in range(routing.vehicles()):
    route_data = []
    index = routing.Start(route_nbr)
    dim_var = dimension.CumulVar(index)
    route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      dim_var = dimension.CumulVar(index)
      route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    cumul_data.append(route_data)
  return cumul_data

C++

std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData(
    const Assignment& solution, const RoutingModel& routing,
    const RoutingDimension& dimension) {
  // Returns an array cumul_data, whose i, j entry is a pair containing
  // the minimum and maximum of CumulVar for the dimension.:
  // - cumul_data[i][j].first is the minimum.
  // - cumul_data[i][j].second is the maximum.
  std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data(
      routing.vehicles());

  for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    IntVar* dim_var = dimension.CumulVar(index);
    cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                        solution.Max(dim_var));
    while (!routing.IsEnd(index)) {
      index = solution.Value(routing.NextVar(index));
      IntVar* dim_var = dimension.CumulVar(index);
      cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                          solution.Max(dim_var));
    }
  }
  return cumul_data;
}

Les fonctions enregistrent les valeurs minimale et maximale des données cumulées pour n'importe quelle dimension (pas seulement le temps). Dans le présent exemple, ces valeurs correspondent aux limites inférieure et supérieure de la fenêtre de la solution. La dimension transmise à la fonction est time_dimension.

Les fonctions suivantes impriment la solution à partir des routes et des données cumulées.

Python

def print_solution(routes, cumul_data):
  """Print the solution."""
  total_time = 0
  route_str = ""
  for i, route in enumerate(routes):
    route_str += "Route " + str(i) + ":\n"
    start_time = cumul_data[i][0][0]
    end_time = cumul_data[i][0][1]
    route_str += (
        "  "
        + str(route[0])
        + " Time("
        + str(start_time)
        + ", "
        + str(end_time)
        + ")"
    )
    for j in range(1, len(route)):
      start_time = cumul_data[i][j][0]
      end_time = cumul_data[i][j][1]
      route_str += (
          " -> "
          + str(route[j])
          + " Time("
          + str(start_time)
          + ", "
          + str(end_time)
          + ")"
      )
    route_str += f"\n  Route time: {start_time}min\n\n"
    total_time += cumul_data[i][len(route) - 1][0]
  route_str += f"Total time: {total_time}min"
  print(route_str)

C++

void PrintSolution(
    const std::vector<std::vector<int>> routes,
    std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) {
  int64_t total_time{0};
  std::ostringstream route;
  for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
    route << "\nRoute " << vehicle_id << ": \n";

    route << "  " << routes[vehicle_id][0] << " Time("
          << cumul_data[vehicle_id][0].first << ", "
          << cumul_data[vehicle_id][0].second << ") ";
    for (int j = 1; j < routes[vehicle_id].size(); ++j) {
      route << "-> " << routes[vehicle_id][j] << " Time("
            << cumul_data[vehicle_id][j].first << ", "
            << cumul_data[vehicle_id][j].second << ") ";
    }
    route << "\n  Route time: "
          << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first
          << " minutes\n";

    total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first;
  }
  route << "\nTotal travel time: " << total_time << " minutes";
  LOG(INFO) << route.str();
}

Terminer les programmes

Vous trouverez ci-dessous tous les programmes permettant de résoudre le problème d'itinéraire des véhicules avec des périodes.

Python

"""Vehicles Routing Problem (VRP) with Time Windows."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        30,  # allow waiting time
        30,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == data["depot"]:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    depot_idx = data["depot"]
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
        )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** VRPTW. */
public class VrpTimeWindows {
  private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName());
  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {16, 18}, // 3
        {10, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 4}, // 7
        {5, 10}, // 8
        {0, 3}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 8}, // 14
        {10, 15}, // 15
        {11, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}
// [END_program_part1]

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Time Windows.
/// </summary>
public class VrpTimeWindows
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 16, 18 }, // 3
            { 10, 13 }, // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 4 },   // 7
            { 5, 10 },  // 8
            { 0, 3 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 8 },   // 14
            { 10, 15 }, // 15
            { 11, 15 }, // 16
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to time
                                                                       // matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Time constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}