Kaynak Kısıtlamaları

Şu ana kadar, bu tür kısıtlamalara tabi olan yönlendirme sorunlarını yardımcı olabilir. Ardından, bir VRPTW'yi tanıtacağız. Bu durumda depoda da kısıtlama vardır: Tıraş öncesinde tüm araçlar depodan çıkıp eve dönüldüğünde boşaltılması. Yalnızca iki yükleme yuvası olduğu için en fazla iki araç aynı anda yüklenir veya kaldırılır. Bu nedenle, bazı araçların yüklenmesini geciktirir ve depodan kalkışlarını geciktirir. Sorun, Çevik’in VRPTW için, yükleme ve yükleme şartlarını karşılayan en uygun araç rotalarını kısıtlamalarını ortadan kaldırıyor.

Kaynak kısıtlamaları içeren VRPTW örneği

Aşağıdaki şemada, kaynak kısıtlamalarına sahip bir VRPTW gösterilmektedir.

OR-Araçları ile örneği çözme

Aşağıdaki bölümlerde, VRPTW'nun kaynak kısıtlamalarıyla nasıl çözüleceği gösterilmektedir VEYA araçlarını kullanarak. Örnekteki kodun bir kısmı öncekiyle aynıdır. VRPTW örneği üzerinden. ve yeni kısımları tanımlamalısınız.

Verileri oluşturma

Aşağıdaki kod bu örnekle ilgili verileri oluşturur.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

Java

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

C#

    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

Veriler şunları içerir:

  • time_matrix: Konumlar arasındaki seyahat süreleri dizisi.
  • time_windows: Konumlara yapılan istenen ziyaretler için bir zaman aralığı dizisi.
  • vehicle_load_time: Bir aracın yüklenmesi için gereken süre.
  • vehicle_unload_time: Bir aracı kaldırmak için gereken süre.
  • depot_capacity: Yüklenebilecek veya boşaltılabilecek maksimum araç sayısı anlamına gelir.

Yükleme ve boşaltma işlemleri için zaman aralıkları ekleyin.

Aşağıdaki kod, araçların yüklenmesi ve boşaltılması için zaman aralıkları ekler: sağlar. FixedDurationIntervalVar yöntemi ile oluşturulan bu pencereler, değişken zaman aralıkları (yani başlangıç ve bitiş zamanları sabit değildir) (konumlardaki zaman aralıklarının aksine). Pencerelerin genişlikleri şunlardır: vehicle_load_time ve vehicle_unload_time tarafından belirlenmiş aynısı olacaktır.

Python

    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

C++

  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

Java

    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

C#

        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

Depoya kaynak kısıtlamaları ekleme

Aşağıdaki kod, en fazla iki aracın taşınabileceği kısıtlamayı oluşturur aynı anda yüklenir veya kaldırılır.

Python

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

C++

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

Java

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

C#

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

depot_capacity, yüklenebilecek maksimum araç sayısıdır aynı anda yüklenmez (bu örnekte 2).

depot_usage, bir önceki resim için gereken göreli boşluk miktarını içeren bir vektör Yükleme (veya yük indirme) sırasında her araç için. Bu örnekte, tüm reklam öğelerinin araçlar aynı miktarda alan gerektirdiğinden depot_usage tüm araçları içerir. Yani aynı yük altında yüklenebilen maksimum araç sayısı saat 2'dir.

Programı çalıştırma

Aşağıda programın sonucu gösterilmektedir.

Route for vehicle 0:
 0 Time(5,5) ->  8 Time(8,8) ->  14 Time(11,11) -> 16 Time(13,13) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 1:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 2:
 0 Time(5,5) -> 7 Time(7,7) -> 1 Time(11,11) -> 4 Time(13,13) -> 3 Time(14,14) -> 0 Time(25,25)
Time of the route: 25min

Route for vehicle 3:
 0 Time(0,0) -> 9 Time(2,3) -> 5 Time(4,5) -> 6 Time(6,9) -> 2 Time(10,12) -> 10 Time(14,16) ->
 0 Time(25,25)
Time of the route: 25min

Total time of all routes: 90min

Önceki VRPTW örneğine bakın. çıktının bir açıklaması için.

1 ve 3 numaralı araçların depodan 0 saatinde kalktığını unutmayın. Araç 0 ve 2. diğerlerinin yüklenmesini beklemeli, 5’te kalkmalı, vehicle_load_time

Çözüm aşağıdaki diyagramda gösterilmektedir.

Programları tamamlama

Kapasiteli araç rotası sorunu için kaynak içeren eksiksiz programlar sınırlamalar aşağıda gösterilmiştir.

Python

"""Vehicles Routing Problem (VRP) with Resource Constraints."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["vehicle_load_time"] = 5
    data["vehicle_unload_time"] = 5
    data["depot_capacity"] = 2
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)}, {solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        60,  # allow waiting time
        60,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == 0:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][0][0], data["time_windows"][0][1]
        )

    # Add resource constraints at the depot.
    solver = routing.solver()
    intervals = []
    for i in range(data["num_vehicles"]):
        # Add time windows at start of routes
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.Start(i)),
                data["vehicle_load_time"],
                "depot_interval",
            )
        )
        # Add time windows at end of routes.
        intervals.append(
            solver.FixedDurationIntervalVar(
                time_dimension.CumulVar(routing.End(i)),
                data["vehicle_unload_time"],
                "depot_interval",
            )
        )

    depot_usage = [1 for _ in range(len(intervals))]
    solver.Add(
        solver.Cumulative(intervals, depot_usage, data["depot_capacity"], "depot")
    )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)
    else:
        print("No solution found !")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {5, 14},   // 3
      {5, 13},   // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 10},   // 7
      {5, 10},   // 8
      {0, 5},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 12},   // 14
      {10, 15},  // 15
      {5, 15},   // 16
  };
  const int num_vehicles = 4;
  const int vehicle_load_time = 5;
  const int vehicle_unload_time = 5;
  const int depot_capacity = 2;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Add resource constraints at the depot.
  Solver* solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int i = 0; i < data.num_vehicles; ++i) {
    // Add load duration at start of routes
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.Start(i)), data.vehicle_load_time,
        "depot_interval"));
    // Add unload duration at end of routes.
    intervals.push_back(solver->MakeFixedDurationIntervalVar(
        time_dimension.CumulVar(routing.End(i)), data.vehicle_unload_time,
        "depot_interval"));
  }

  std::vector<int64_t> depot_usage(intervals.size(), 1);
  solver->AddConstraint(solver->MakeCumulative(intervals, depot_usage,
                                               data.depot_capacity, "depot"));

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.IntervalVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.Solver;
import com.google.ortools.constraintsolver.main;
import java.util.Arrays;
import java.util.logging.Logger;

/** Minimal VRP with Resource Constraints.*/
public class VrpResources {
  private static final Logger logger = Logger.getLogger(VrpResources.class.getName());

  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {5, 14}, // 3
        {5, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 10}, // 7
        {5, 10}, // 8
        {0, 5}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 12}, // 14
        {10, 15}, // 15
        {5, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int vehicleLoadTime = 5;
    public final int vehicleUnloadTime = 5;
    public final int depotCapacity = 2;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Add resource constraints at the depot.
    Solver solver = routing.solver();
    IntervalVar[] intervals = new IntervalVar[data.vehicleNumber * 2];
    for (int i = 0; i < data.vehicleNumber; ++i) {
      // Add load duration at start of routes
      intervals[2 * i] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.start(i)), data.vehicleLoadTime, "depot_interval");
      // Add unload duration at end of routes.
      intervals[2 * i + 1] = solver.makeFixedDurationIntervalVar(
          timeDimension.cumulVar(routing.end(i)), data.vehicleUnloadTime, "depot_interval");
    }

    long[] depotUsage = new long[intervals.length];
    Arrays.fill(depotUsage, 1);
    solver.addConstraint(solver.makeCumulative(intervals, depotUsage, data.depotCapacity, "depot"));

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Linq;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Resource Constraints.
/// </summary>
public class VrpResources
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 5, 14 },  // 3
            { 5, 13 },  // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 10 },  // 7
            { 5, 10 },  // 8
            { 0, 5 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 12 },  // 14
            { 10, 15 }, // 15
            { 5, 15 },  // 16
        };
        public int VehicleNumber = 4;
        public int VehicleLoadTime = 5;
        public int VehicleUnloadTime = 5;
        public int DepotCapacity = 2;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Add resource constraints at the depot.
        Solver solver = routing.solver();
        IntervalVar[] intervals = new IntervalVar[data.VehicleNumber * 2];
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            // Add load duration at start of routes
            intervals[2 * i] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.Start(i)),
                                                                   data.VehicleLoadTime, "depot_interval");
            // Add unload duration at end of routes.
            intervals[2 * i + 1] = solver.MakeFixedDurationIntervalVar(timeDimension.CumulVar(routing.End(i)),
                                                                       data.VehicleUnloadTime, "depot_interval");
        }

        long[] depot_usage = Enumerable.Repeat<long>(1, intervals.Length).ToArray();
        solver.Add(solver.MakeCumulative(intervals, depot_usage, data.DepotCapacity, "depot"));

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}