مشکل فروشنده مسافرتی

این بخش نمونه ای را ارائه می دهد که نشان می دهد چگونه مشکل فروشنده مسافر (TSP) را برای مکان های نشان داده شده در نقشه زیر حل کنید.

بخش های زیر برنامه هایی را در پایتون، سی پلاس پلاس، جاوا و سی شارپ ارائه می دهند که TSP را با استفاده از OR-Tools حل می کنند.

داده ها را ایجاد کنید

کد زیر داده های مشکل را ایجاد می کند.

پایتون

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
        [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
        [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
        [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
        [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
        [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
        [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
        [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
        [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
        [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
        [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
        [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
        [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

جاوا

static class DataModel {
  public final long[][] distanceMatrix = {
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  public final int vehicleNumber = 1;
  public final int depot = 0;
}

سی شارپ

class DataModel
{
    public long[,] DistanceMatrix = {
        { 0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972 },
        { 2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579 },
        { 713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260 },
        { 1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987 },
        { 1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371 },
        { 1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999 },
        { 2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701 },
        { 213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099 },
        { 2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600 },
        { 875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162 },
        { 1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200 },
        { 2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504 },
        { 1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0 },
    };
    public int VehicleNumber = 1;
    public int Depot = 0;
};

ماتریس فاصله آرایه‌ای است که ورودی آن i ، j فاصله مکان i تا مکان j بر حسب مایل است، که در آن شاخص‌های آرایه به ترتیب زیر با مکان‌ها مطابقت دارند:

0. New York - 1. Los Angeles - 2. Chicago - 3. Minneapolis - 4. Denver - 5. Dallas
- 6. Seattle - 7. Boston - 8. San Francisco - 9. St. Louis - 10. Houston - 11. Phoenix - 12. Salt Lake City

داده ها همچنین شامل:

  • تعداد وسایل نقلیه در مشکل، که 1 است زیرا این یک TSP است. (برای یک مشکل مسیریابی وسیله نقلیه (VRP)، تعداد وسایل نقلیه می تواند بیشتر از 1 باشد.)
  • دپو : محل شروع و پایان مسیر. در این مورد، دپو 0 است که مربوط به نیویورک است.

راه های دیگر برای ایجاد ماتریس فاصله

در این مثال، ماتریس فاصله به صراحت در برنامه تعریف شده است. همچنین می توان از یک تابع برای محاسبه فاصله بین مکان ها استفاده کرد: برای مثال، فرمول اقلیدسی برای فاصله بین نقاط در صفحه. با این حال، هنوز هم کارآمدتر است که تمام فواصل بین مکان‌ها را از قبل محاسبه کنیم و آنها را در یک ماتریس ذخیره کنیم، نه اینکه آنها را در زمان اجرا محاسبه کنیم. به مثال نگاه کنید: حفاری یک برد مدار برای مثالی که ماتریس فاصله را به این ترتیب ایجاد می کند.

جایگزین دیگر استفاده از Google Maps Distance Matrix API برای ایجاد پویا ماتریس مسافت (یا زمان سفر) برای مشکل مسیریابی است.

مدل مسیریابی را ایجاد کنید

کد زیر در بخش اصلی برنامه ها مدیر ایندکس ( manager ) و مدل مسیریابی ( routing ) را ایجاد می کند. متد manager.IndexToNode شاخص‌های داخلی حل‌کننده (که می‌توانید با خیال راحت نادیده بگیرید) را به اعداد مکان‌ها تبدیل می‌کند. اعداد مکان مربوط به شاخص های ماتریس فاصله است.

پایتون

data = create_data_model()
manager = pywrapcp.RoutingIndexManager(
    len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
)
routing = pywrapcp.RoutingModel(manager)

C++

DataModel data;
RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                            data.depot);
RoutingModel routing(manager);

جاوا

final DataModel data = new DataModel();
RoutingIndexManager manager =
    new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);
RoutingModel routing = new RoutingModel(manager);

سی شارپ

DataModel data = new DataModel();
RoutingIndexManager manager =
    new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);
RoutingModel routing = new RoutingModel(manager);

ورودی های RoutingIndexManager عبارتند از:

  • تعداد ردیف های ماتریس فاصله، که تعداد مکان ها (از جمله انبار) است.
  • تعداد وسایل نقلیه در مشکل.
  • گره مربوط به انبار.

پاسخ تماس فاصله را ایجاد کنید

برای استفاده از حل‌کننده مسیریابی، باید یک بازخوانی فاصله (یا انتقال) ایجاد کنید: تابعی که هر جفت مکان را می‌گیرد و فاصله بین آنها را برمی‌گرداند. ساده ترین راه برای انجام این کار استفاده از ماتریس فاصله است.

تابع زیر callback را ایجاد می کند و آن را با حل کننده به عنوان transit_callback_index ثبت می کند.

پایتون

def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data["distance_matrix"][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)
  

C++

const int transit_callback_index = routing.RegisterTransitCallback(
    [&data, &manager](const int64_t from_index,
                      const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to distance matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return data.distance_matrix[from_node][to_node];
    });
  

Java

final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return data.distanceMatrix[fromNode][toNode];
    });
  

C#

int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to
                                                               // distance matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return data.DistanceMatrix[fromNode, toNode];
                                                           });
  

The callback accepts two indices, from_index and to_index, and returns the corresponding entry of the distance matrix.

Set the cost of travel

The arc cost evaluator tells the solver how to calculate the cost of travel between any two locations — in other words, the cost of the edge (or arc) joining them in the graph for the problem. The following code sets the arc cost evaluator.

Python

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

جاوا

routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

سی شارپ

routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

در این مثال، ارزیاب هزینه قوس transit_callback_index است که مرجع داخلی حل کننده به پاسخ تماس فاصله است. این بدان معنی است که هزینه سفر بین هر دو مکان فقط فاصله بین آنها است. با این حال، به طور کلی هزینه ها می تواند عوامل دیگری را نیز شامل شود.

همچنین می توانید با استفاده از روش routing.SetArcCostEvaluatorOfVehicle() ، چندین ارزیاب هزینه قوس را تعریف کنید که بستگی به وسیله نقلیه ای دارد که بین مکان ها حرکت می کند. به عنوان مثال، اگر وسایل نقلیه دارای سرعت های متفاوتی هستند، می توانید هزینه سفر بین مکان ها را تقسیم بر سرعت وسیله نقلیه - به عبارت دیگر، زمان سفر - تعریف کنید.

تنظیم پارامترهای جستجو

کد زیر پارامترهای جستجوی پیش فرض و یک روش اکتشافی را برای یافتن اولین راه حل تنظیم می کند:

پایتون

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
    FirstSolutionStrategy::PATH_CHEAPEST_ARC);

جاوا

RoutingSearchParameters searchParameters =
    main.defaultRoutingSearchParameters()
        .toBuilder()
        .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
        .build();

سی شارپ

RoutingSearchParameters searchParameters =
    operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

این کد اولین استراتژی راه‌حل را روی PATH_CHEAPEST_ARC که با اضافه کردن مکرر یال‌هایی با کمترین وزن که به گره‌ای که قبلاً بازدید شده است (غیر از انبار) یک مسیر اولیه برای حل‌کننده ایجاد می‌کند. برای گزینه‌های دیگر، استراتژی راه‌حل اول را ببینید.

چاپگر محلول را اضافه کنید

تابعی که راه حل بازگشتی توسط حل کننده را نمایش می دهد در زیر نشان داده شده است. تابع مسیر را از راه حل استخراج می کند و آن را در کنسول چاپ می کند.

پایتون

def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()} miles")
    index = routing.Start(0)
    plan_output = "Route for vehicle 0:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Route distance: {route_distance}miles\n"

C++

//! @brief Print the solution.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Inspect solution.
  LOG(INFO) << "Objective: " << solution.ObjectiveValue() << " miles";
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

جاوا

/// @brief Print the solution.
static void printSolution(
    RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective: " + solution.objectiveValue() + "miles");
  // Inspect solution.
  logger.info("Route:");
  long routeDistance = 0;
  String route = "";
  long index = routing.start(0);
  while (!routing.isEnd(index)) {
    route += manager.indexToNode(index) + " -> ";
    long previousIndex = index;
    index = solution.value(routing.nextVar(index));
    routeDistance += routing.getArcCostForVehicle(previousIndex, index, 0);
  }
  route += manager.indexToNode(routing.end(0));
  logger.info(route);
  logger.info("Route distance: " + routeDistance + "miles");
}

سی شارپ

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
{
    Console.WriteLine("Objective: {0} miles", solution.ObjectiveValue());
    // Inspect solution.
    Console.WriteLine("Route:");
    long routeDistance = 0;
    var index = routing.Start(0);
    while (routing.IsEnd(index) == false)
    {
        Console.Write("{0} -> ", manager.IndexToNode((int)index));
        var previousIndex = index;
        index = solution.Value(routing.NextVar(index));
        routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
    }
    Console.WriteLine("{0}", manager.IndexToNode((int)index));
    Console.WriteLine("Route distance: {0}miles", routeDistance);
}

تابع مسیر بهینه و فاصله آن را نشان می دهد که توسط ObjectiveValue() داده می شود.

محلول را حل کرده و چاپ کنید

در نهایت می‌توانید با حل‌کننده تماس بگیرید و راه‌حل را چاپ کنید:

پایتون

solution = routing.SolveWithParameters(search_parameters)
if solution:
    print_solution(manager, routing, solution)

C++

const Assignment* solution = routing.SolveWithParameters(searchParameters);
PrintSolution(manager, routing, *solution);

جاوا

Assignment solution = routing.solveWithParameters(searchParameters);
printSolution(routing, manager, solution);

سی شارپ

Assignment solution = routing.SolveWithParameters(searchParameters);
PrintSolution(routing, manager, solution);

این راه حل را برمی گرداند و مسیر بهینه را نشان می دهد.

برنامه ها را اجرا کنید

وقتی برنامه ها را اجرا می کنید، خروجی زیر را نمایش می دهند.

Objective: 7293 miles
Route for vehicle 0:
 0 -> 7 -> 2 -> 3 -> 4 -> 12 -> 6 -> 8 -> 1 -> 11 -> 10 -> 5 -> 9 -> 0

در این مثال، تنها یک مسیر وجود دارد زیرا یک TSP است. اما در مسائل کلی تر مسیریابی وسایل نقلیه، راه حل شامل چندین مسیر است.

مسیرها را در فهرست یا آرایه ذخیره کنید

به عنوان جایگزینی برای چاپ مستقیم راه حل، می توانید مسیر (یا مسیرها، برای VRP) را در یک لیست یا آرایه ذخیره کنید. این مزیت این است که اگر بخواهید بعداً کاری با آنها انجام دهید، مسیرها را در دسترس قرار می دهد. به عنوان مثال، می توانید برنامه را چندین بار با پارامترهای مختلف اجرا کنید و مسیرهای موجود در راه حل های بازگشتی را برای مقایسه در یک فایل ذخیره کنید.

توابع زیر مسیرهای موجود در راه حل را برای هر VRP (احتمالاً با چندین وسیله نقلیه) به عنوان یک لیست (Python) یا یک آرایه (C++) ذخیره می کنند.

پایتون

def get_routes(solution, routing, manager):
  """Get vehicle routes from a solution and store them in an array."""
  # Get vehicle routes and store them in a two dimensional array whose
  # i,j entry is the jth location visited by vehicle i along its route.
  routes = []
  for route_nbr in range(routing.vehicles()):
    index = routing.Start(route_nbr)
    route = [manager.IndexToNode(index)]
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      route.append(manager.IndexToNode(index))
    routes.append(route)
  return routes

C++

std::vector<std::vector<int>> GetRoutes(const Assignment& solution,
                                        const RoutingModel& routing,
                                        const RoutingIndexManager& manager) {
  // Get vehicle routes and store them in a two dimensional array, whose
  // i, j entry is the node for the jth visit of vehicle i.
  std::vector<std::vector<int>> routes(manager.num_vehicles());
  // Get routes.
  for (int vehicle_id = 0; vehicle_id < manager.num_vehicles(); ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    routes[vehicle_id].push_back(manager.IndexToNode(index).value());
    while (!routing.IsEnd(index)) {
      index = solution.Value(routing.NextVar(index));
      routes[vehicle_id].push_back(manager.IndexToNode(index).value());
    }
  }
  return routes;
}

می توانید از این توابع برای دریافت مسیرها در هر یک از مثال های VRP در بخش Routing استفاده کنید.

کد زیر مسیرها را نمایش می دهد.

پایتون

routes = get_routes(solution, routing, manager)
# Display the routes.
for i, route in enumerate(routes):
  print('Route', i, route)

C++

const std::vector⟨std::vector⟨int⟩⟩
    routes = GetRoutes(*solution,
                        routing,
                        manager);
// Display the routes.
for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
  LOG(INFO) << "Route " << vehicle_id;
  for (int j = 1; j < routes[vehicle_id].size(); ++j) {
    LOG(INFO) << routes[vehicle_id][j];
  }
}

برای مثال فعلی، این کد مسیر زیر را برمی گرداند:

Route 0 [0, 7, 2, 3, 4, 12, 6, 8, 1, 11, 10, 5, 9, 0]

به عنوان یک تمرین، کد بالا را تغییر دهید تا خروجی را مانند چاپگر راه حل برای برنامه فرمت کنید.

برنامه های کامل

برنامه های کامل TSP در زیر نشان داده شده است.

پایتون

"""Simple Travelling Salesperson Problem (TSP) between cities."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
        [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
        [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
        [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
        [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
        [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
        [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
        [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
        [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
        [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
        [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
        [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
        [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data


def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()} miles")
    index = routing.Start(0)
    plan_output = "Route for vehicle 0:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Route distance: {route_distance}miles\n"


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cmath>
#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
      {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
      {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
      {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
      {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
      {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
      {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
      {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
      {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
      {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
      {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
      {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
      {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Inspect solution.
  LOG(INFO) << "Objective: " << solution.ObjectiveValue() << " miles";
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void Tsp() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(manager, routing, *solution);
}

}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::Tsp();
  return EXIT_SUCCESS;
}

جاوا

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;


/** Minimal TSP using distance matrix. */
public class TspCities {
  private static final Logger logger = Logger.getLogger(TspCities.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972},
        {2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579},
        {713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260},
        {1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987},
        {1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371},
        {1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999},
        {2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701},
        {213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099},
        {2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600},
        {875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162},
        {1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200},
        {2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504},
        {1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0},
    };
    public final int vehicleNumber = 1;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue() + "miles");
    // Inspect solution.
    logger.info("Route:");
    long routeDistance = 0;
    String route = "";
    long index = routing.start(0);
    while (!routing.isEnd(index)) {
      route += manager.indexToNode(index) + " -> ";
      long previousIndex = index;
      index = solution.value(routing.nextVar(index));
      routeDistance += routing.getArcCostForVehicle(previousIndex, index, 0);
    }
    route += manager.indexToNode(routing.end(0));
    logger.info(route);
    logger.info("Route distance: " + routeDistance + "miles");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(routing, manager, solution);
  }
}

سی شارپ

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal TSP using distance matrix.
/// </summary>
public class TspCities
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972 },
            { 2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579 },
            { 713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260 },
            { 1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987 },
            { 1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371 },
            { 1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999 },
            { 2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701 },
            { 213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099 },
            { 2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600 },
            { 875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162 },
            { 1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200 },
            { 2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504 },
            { 1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0 },
        };
        public int VehicleNumber = 1;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
    {
        Console.WriteLine("Objective: {0} miles", solution.ObjectiveValue());
        // Inspect solution.
        Console.WriteLine("Route:");
        long routeDistance = 0;
        var index = routing.Start(0);
        while (routing.IsEnd(index) == false)
        {
            Console.Write("{0} -> ", manager.IndexToNode((int)index));
            var previousIndex = index;
            index = solution.Value(routing.NextVar(index));
            routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
        }
        Console.WriteLine("{0}", manager.IndexToNode((int)index));
        Console.WriteLine("Route distance: {0}miles", routeDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(routing, manager, solution);
    }
}

مثال: حفاری یک برد مدار

مثال بعدی شامل حفاری سوراخ در یک برد مدار با مته خودکار است. مشکل این است که کوتاه ترین مسیری را برای مته که روی تخته طی می کند پیدا کنید تا تمام سوراخ های مورد نیاز را سوراخ کنید. مثال از TSPLIB، کتابخانه ای از مسائل TSP گرفته شده است.

در اینجا نمودار پراکندگی مکان سوراخ ها آمده است:

بخش‌های زیر برنامه‌هایی را ارائه می‌کنند که با استفاده از پارامترهای جستجوی پیش‌فرض حل‌کننده، راه‌حل خوبی برای مشکل برد مدار پیدا می‌کنند. پس از آن، نحوه یافتن راه حل بهتر را با تغییر استراتژی جستجو نشان خواهیم داد.

داده ها را ایجاد کنید

داده های مسئله شامل 280 نقطه در صفحه است که در نمودار پراکندگی بالا نشان داده شده است. این برنامه داده‌ها را در آرایه‌ای از جفت‌های مرتب شده مطابق با نقاط صفحه، مطابق شکل زیر ایجاد می‌کند.

پایتون

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    # Locations in block units
    data["locations"] = [
        # fmt: off
      (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157),
      (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169),
      (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145),
      (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169),
      (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153),
      (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165),
      (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129),
      (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153),
      (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145),
      (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113),
      (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89),
      (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81),
      (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41),
      (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73),
      (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43),
      (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17),
      (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25),
      (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49),
      (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73),
      (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105),
      (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145),
      (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137),
      (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93),
      (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53),
      (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85),
      (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101),
      (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41),
      (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9),
      (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49),
      (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61),
      (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21),
      (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9),
      (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37),
      (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57),
      (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69),
      (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45),
      (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21),
      (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61),
      (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53),
      (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93),
      (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85),
      (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85),
      (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109),
      (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101),
      (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125),
      (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145),
      (246, 141), (252, 125), (260, 129), (280, 133)
        # fmt: on
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data

C++

struct DataModel {
  const std::vector<std::vector<int>> locations{
      {288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157}, {246, 157},
      {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145},
      {156, 145}, {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169},
      {156, 169}, {140, 169}, {132, 169}, {124, 169}, {116, 161}, {104, 153},
      {104, 161}, {104, 169}, {90, 165},  {80, 157},  {64, 157},  {64, 165},
      {56, 169},  {56, 161},  {56, 153},  {56, 145},  {56, 137},  {56, 129},
      {56, 121},  {40, 121},  {40, 129},  {40, 137},  {40, 145},  {40, 153},
      {40, 161},  {40, 169},  {32, 169},  {32, 161},  {32, 153},  {32, 145},
      {32, 137},  {32, 129},  {32, 121},  {32, 113},  {40, 113},  {56, 113},
      {56, 105},  {48, 99},   {40, 99},   {32, 97},   {32, 89},   {24, 89},
      {16, 97},   {16, 109},  {8, 109},   {8, 97},    {8, 89},    {8, 81},
      {8, 73},    {8, 65},    {8, 57},    {16, 57},   {8, 49},    {8, 41},
      {24, 45},   {32, 41},   {32, 49},   {32, 57},   {32, 65},   {32, 73},
      {32, 81},   {40, 83},   {40, 73},   {40, 63},   {40, 51},   {44, 43},
      {44, 35},   {44, 27},   {32, 25},   {24, 25},   {16, 25},   {16, 17},
      {24, 17},   {32, 17},   {44, 11},   {56, 9},    {56, 17},   {56, 25},
      {56, 33},   {56, 41},   {64, 41},   {72, 41},   {72, 49},   {56, 49},
      {48, 51},   {56, 57},   {56, 65},   {48, 63},   {48, 73},   {56, 73},
      {56, 81},   {48, 83},   {56, 89},   {56, 97},   {104, 97},  {104, 105},
      {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137},
      {164, 137}, {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93},
      {172, 85},  {180, 85},  {180, 77},  {180, 69},  {180, 61},  {180, 53},
      {172, 53},  {172, 61},  {172, 69},  {172, 77},  {164, 81},  {148, 85},
      {124, 85},  {124, 93},  {124, 109}, {124, 125}, {124, 117}, {124, 101},
      {104, 89},  {104, 81},  {104, 73},  {104, 65},  {104, 49},  {104, 41},
      {104, 33},  {104, 25},  {104, 17},  {92, 9},    {80, 9},    {72, 9},
      {64, 21},   {72, 25},   {80, 25},   {80, 25},   {80, 41},   {88, 49},
      {104, 57},  {124, 69},  {124, 77},  {132, 81},  {140, 65},  {132, 61},
      {124, 61},  {124, 53},  {124, 45},  {124, 37},  {124, 29},  {132, 21},
      {124, 21},  {120, 9},   {128, 9},   {136, 9},   {148, 9},   {162, 9},
      {156, 25},  {172, 21},  {180, 21},  {180, 29},  {172, 29},  {172, 37},
      {172, 45},  {180, 45},  {180, 37},  {188, 41},  {196, 49},  {204, 57},
      {212, 65},  {220, 73},  {228, 69},  {228, 77},  {236, 77},  {236, 69},
      {236, 61},  {228, 61},  {228, 53},  {236, 53},  {236, 45},  {228, 45},
      {228, 37},  {236, 37},  {236, 29},  {228, 29},  {228, 21},  {236, 21},
      {252, 21},  {260, 29},  {260, 37},  {260, 45},  {260, 53},  {260, 61},
      {260, 69},  {260, 77},  {276, 77},  {276, 69},  {276, 61},  {276, 53},
      {284, 53},  {284, 61},  {284, 69},  {284, 77},  {284, 85},  {284, 93},
      {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93},  {276, 85},
      {268, 97},  {260, 109}, {252, 101}, {260, 93},  {260, 85},  {236, 85},
      {228, 85},  {228, 93},  {236, 93},  {236, 101}, {228, 101}, {228, 109},
      {228, 117}, {228, 125}, {220, 125}, {212, 117}, {204, 109}, {196, 101},
      {188, 93},  {180, 93},  {180, 101}, {180, 109}, {180, 117}, {180, 125},
      {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145}, {236, 145},
      {246, 141}, {252, 125}, {260, 129}, {280, 133},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

جاوا

static class DataModel {
  public final int[][] locations = {{288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157},
      {246, 157}, {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145}, {156, 145},
      {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169}, {156, 169}, {140, 169},
      {132, 169}, {124, 169}, {116, 161}, {104, 153}, {104, 161}, {104, 169}, {90, 165},
      {80, 157}, {64, 157}, {64, 165}, {56, 169}, {56, 161}, {56, 153}, {56, 145}, {56, 137},
      {56, 129}, {56, 121}, {40, 121}, {40, 129}, {40, 137}, {40, 145}, {40, 153}, {40, 161},
      {40, 169}, {32, 169}, {32, 161}, {32, 153}, {32, 145}, {32, 137}, {32, 129}, {32, 121},
      {32, 113}, {40, 113}, {56, 113}, {56, 105}, {48, 99}, {40, 99}, {32, 97}, {32, 89},
      {24, 89}, {16, 97}, {16, 109}, {8, 109}, {8, 97}, {8, 89}, {8, 81}, {8, 73}, {8, 65},
      {8, 57}, {16, 57}, {8, 49}, {8, 41}, {24, 45}, {32, 41}, {32, 49}, {32, 57}, {32, 65},
      {32, 73}, {32, 81}, {40, 83}, {40, 73}, {40, 63}, {40, 51}, {44, 43}, {44, 35}, {44, 27},
      {32, 25}, {24, 25}, {16, 25}, {16, 17}, {24, 17}, {32, 17}, {44, 11}, {56, 9}, {56, 17},
      {56, 25}, {56, 33}, {56, 41}, {64, 41}, {72, 41}, {72, 49}, {56, 49}, {48, 51}, {56, 57},
      {56, 65}, {48, 63}, {48, 73}, {56, 73}, {56, 81}, {48, 83}, {56, 89}, {56, 97}, {104, 97},
      {104, 105}, {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137}, {164, 137},
      {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93}, {172, 85}, {180, 85}, {180, 77},
      {180, 69}, {180, 61}, {180, 53}, {172, 53}, {172, 61}, {172, 69}, {172, 77}, {164, 81},
      {148, 85}, {124, 85}, {124, 93}, {124, 109}, {124, 125}, {124, 117}, {124, 101}, {104, 89},
      {104, 81}, {104, 73}, {104, 65}, {104, 49}, {104, 41}, {104, 33}, {104, 25}, {104, 17},
      {92, 9}, {80, 9}, {72, 9}, {64, 21}, {72, 25}, {80, 25}, {80, 25}, {80, 41}, {88, 49},
      {104, 57}, {124, 69}, {124, 77}, {132, 81}, {140, 65}, {132, 61}, {124, 61}, {124, 53},
      {124, 45}, {124, 37}, {124, 29}, {132, 21}, {124, 21}, {120, 9}, {128, 9}, {136, 9},
      {148, 9}, {162, 9}, {156, 25}, {172, 21}, {180, 21}, {180, 29}, {172, 29}, {172, 37},
      {172, 45}, {180, 45}, {180, 37}, {188, 41}, {196, 49}, {204, 57}, {212, 65}, {220, 73},
      {228, 69}, {228, 77}, {236, 77}, {236, 69}, {236, 61}, {228, 61}, {228, 53}, {236, 53},
      {236, 45}, {228, 45}, {228, 37}, {236, 37}, {236, 29}, {228, 29}, {228, 21}, {236, 21},
      {252, 21}, {260, 29}, {260, 37}, {260, 45}, {260, 53}, {260, 61}, {260, 69}, {260, 77},
      {276, 77}, {276, 69}, {276, 61}, {276, 53}, {284, 53}, {284, 61}, {284, 69}, {284, 77},
      {284, 85}, {284, 93}, {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93}, {276, 85},
      {268, 97}, {260, 109}, {252, 101}, {260, 93}, {260, 85}, {236, 85}, {228, 85}, {228, 93},
      {236, 93}, {236, 101}, {228, 101}, {228, 109}, {228, 117}, {228, 125}, {220, 125},
      {212, 117}, {204, 109}, {196, 101}, {188, 93}, {180, 93}, {180, 101}, {180, 109},
      {180, 117}, {180, 125}, {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145},
      {236, 145}, {246, 141}, {252, 125}, {260, 129}, {280, 133}};
  public final int vehicleNumber = 1;
  public final int depot = 0;
}

سی شارپ

class DataModel
{
    public int[,] Locations = {
        { 288, 149 }, { 288, 129 }, { 270, 133 }, { 256, 141 }, { 256, 157 }, { 246, 157 }, { 236, 169 },
        { 228, 169 }, { 228, 161 }, { 220, 169 }, { 212, 169 }, { 204, 169 }, { 196, 169 }, { 188, 169 },
        { 196, 161 }, { 188, 145 }, { 172, 145 }, { 164, 145 }, { 156, 145 }, { 148, 145 }, { 140, 145 },
        { 148, 169 }, { 164, 169 }, { 172, 169 }, { 156, 169 }, { 140, 169 }, { 132, 169 }, { 124, 169 },
        { 116, 161 }, { 104, 153 }, { 104, 161 }, { 104, 169 }, { 90, 165 },  { 80, 157 },  { 64, 157 },
        { 64, 165 },  { 56, 169 },  { 56, 161 },  { 56, 153 },  { 56, 145 },  { 56, 137 },  { 56, 129 },
        { 56, 121 },  { 40, 121 },  { 40, 129 },  { 40, 137 },  { 40, 145 },  { 40, 153 },  { 40, 161 },
        { 40, 169 },  { 32, 169 },  { 32, 161 },  { 32, 153 },  { 32, 145 },  { 32, 137 },  { 32, 129 },
        { 32, 121 },  { 32, 113 },  { 40, 113 },  { 56, 113 },  { 56, 105 },  { 48, 99 },   { 40, 99 },
        { 32, 97 },   { 32, 89 },   { 24, 89 },   { 16, 97 },   { 16, 109 },  { 8, 109 },   { 8, 97 },
        { 8, 89 },    { 8, 81 },    { 8, 73 },    { 8, 65 },    { 8, 57 },    { 16, 57 },   { 8, 49 },
        { 8, 41 },    { 24, 45 },   { 32, 41 },   { 32, 49 },   { 32, 57 },   { 32, 65 },   { 32, 73 },
        { 32, 81 },   { 40, 83 },   { 40, 73 },   { 40, 63 },   { 40, 51 },   { 44, 43 },   { 44, 35 },
        { 44, 27 },   { 32, 25 },   { 24, 25 },   { 16, 25 },   { 16, 17 },   { 24, 17 },   { 32, 17 },
        { 44, 11 },   { 56, 9 },    { 56, 17 },   { 56, 25 },   { 56, 33 },   { 56, 41 },   { 64, 41 },
        { 72, 41 },   { 72, 49 },   { 56, 49 },   { 48, 51 },   { 56, 57 },   { 56, 65 },   { 48, 63 },
        { 48, 73 },   { 56, 73 },   { 56, 81 },   { 48, 83 },   { 56, 89 },   { 56, 97 },   { 104, 97 },
        { 104, 105 }, { 104, 113 }, { 104, 121 }, { 104, 129 }, { 104, 137 }, { 104, 145 }, { 116, 145 },
        { 124, 145 }, { 132, 145 }, { 132, 137 }, { 140, 137 }, { 148, 137 }, { 156, 137 }, { 164, 137 },
        { 172, 125 }, { 172, 117 }, { 172, 109 }, { 172, 101 }, { 172, 93 },  { 172, 85 },  { 180, 85 },
        { 180, 77 },  { 180, 69 },  { 180, 61 },  { 180, 53 },  { 172, 53 },  { 172, 61 },  { 172, 69 },
        { 172, 77 },  { 164, 81 },  { 148, 85 },  { 124, 85 },  { 124, 93 },  { 124, 109 }, { 124, 125 },
        { 124, 117 }, { 124, 101 }, { 104, 89 },  { 104, 81 },  { 104, 73 },  { 104, 65 },  { 104, 49 },
        { 104, 41 },  { 104, 33 },  { 104, 25 },  { 104, 17 },  { 92, 9 },    { 80, 9 },    { 72, 9 },
        { 64, 21 },   { 72, 25 },   { 80, 25 },   { 80, 25 },   { 80, 41 },   { 88, 49 },   { 104, 57 },
        { 124, 69 },  { 124, 77 },  { 132, 81 },  { 140, 65 },  { 132, 61 },  { 124, 61 },  { 124, 53 },
        { 124, 45 },  { 124, 37 },  { 124, 29 },  { 132, 21 },  { 124, 21 },  { 120, 9 },   { 128, 9 },
        { 136, 9 },   { 148, 9 },   { 162, 9 },   { 156, 25 },  { 172, 21 },  { 180, 21 },  { 180, 29 },
        { 172, 29 },  { 172, 37 },  { 172, 45 },  { 180, 45 },  { 180, 37 },  { 188, 41 },  { 196, 49 },
        { 204, 57 },  { 212, 65 },  { 220, 73 },  { 228, 69 },  { 228, 77 },  { 236, 77 },  { 236, 69 },
        { 236, 61 },  { 228, 61 },  { 228, 53 },  { 236, 53 },  { 236, 45 },  { 228, 45 },  { 228, 37 },
        { 236, 37 },  { 236, 29 },  { 228, 29 },  { 228, 21 },  { 236, 21 },  { 252, 21 },  { 260, 29 },
        { 260, 37 },  { 260, 45 },  { 260, 53 },  { 260, 61 },  { 260, 69 },  { 260, 77 },  { 276, 77 },
        { 276, 69 },  { 276, 61 },  { 276, 53 },  { 284, 53 },  { 284, 61 },  { 284, 69 },  { 284, 77 },
        { 284, 85 },  { 284, 93 },  { 284, 101 }, { 288, 109 }, { 280, 109 }, { 276, 101 }, { 276, 93 },
        { 276, 85 },  { 268, 97 },  { 260, 109 }, { 252, 101 }, { 260, 93 },  { 260, 85 },  { 236, 85 },
        { 228, 85 },  { 228, 93 },  { 236, 93 },  { 236, 101 }, { 228, 101 }, { 228, 109 }, { 228, 117 },
        { 228, 125 }, { 220, 125 }, { 212, 117 }, { 204, 109 }, { 196, 101 }, { 188, 93 },  { 180, 93 },
        { 180, 101 }, { 180, 109 }, { 180, 117 }, { 180, 125 }, { 196, 145 }, { 204, 145 }, { 212, 145 },
        { 220, 145 }, { 228, 145 }, { 236, 145 }, { 246, 141 }, { 252, 125 }, { 260, 129 }, { 280, 133 },
    };
    public int VehicleNumber = 1;
    public int Depot = 0;
};

ماتریس فاصله را محاسبه کنید

تابع زیر فاصله اقلیدسی بین هر دو نقطه از داده ها را محاسبه کرده و در یک آرایه ذخیره می کند. از آنجایی که حل کننده مسیریابی روی اعداد صحیح کار می کند، این تابع فاصله های محاسبه شده را به اعداد صحیح گرد می کند. گرد کردن راه حل در این مثال را تحت تاثیر قرار نمی دهد، اما ممکن است در موارد دیگر. برای جلوگیری از مشکلات احتمالی گرد کردن ، مقیاس ماتریس فاصله را ببینید.

پایتون

def compute_euclidean_distance_matrix(locations):
    """Creates callback to return distance between points."""
    distances = {}
    for from_counter, from_node in enumerate(locations):
        distances[from_counter] = {}
        for to_counter, to_node in enumerate(locations):
            if from_counter == to_counter:
                distances[from_counter][to_counter] = 0
            else:
                # Euclidean distance
                distances[from_counter][to_counter] = int(
                    math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1]))
                )
    return distances

C++

// @brief Generate distance matrix.
std::vector<std::vector<int64_t>> ComputeEuclideanDistanceMatrix(
    const std::vector<std::vector<int>>& locations) {
  std::vector<std::vector<int64_t>> distances =
      std::vector<std::vector<int64_t>>(
          locations.size(), std::vector<int64_t>(locations.size(), int64_t{0}));
  for (int from_node = 0; from_node < locations.size(); from_node++) {
    for (int to_node = 0; to_node < locations.size(); to_node++) {
      if (from_node != to_node)
        distances[from_node][to_node] = static_cast<int64_t>(
            std::hypot((locations[to_node][0] - locations[from_node][0]),
                       (locations[to_node][1] - locations[from_node][1])));
    }
  }
  return distances;
}

جاوا

/// @brief Compute Euclidean distance matrix from locations array.
/// @details It uses an array of locations and computes
/// the Euclidean distance between any two locations.
private static long[][] computeEuclideanDistanceMatrix(int[][] locations) {
  // Calculate distance matrix using Euclidean distance.
  long[][] distanceMatrix = new long[locations.length][locations.length];
  for (int fromNode = 0; fromNode < locations.length; ++fromNode) {
    for (int toNode = 0; toNode < locations.length; ++toNode) {
      if (fromNode == toNode) {
        distanceMatrix[fromNode][toNode] = 0;
      } else {
        distanceMatrix[fromNode][toNode] =
            (long) Math.hypot(locations[toNode][0] - locations[fromNode][0],
                locations[toNode][1] - locations[fromNode][1]);
      }
    }
  }
  return distanceMatrix;
}

سی شارپ

/// <summary>
///   Euclidean distance implemented as a callback. It uses an array of
///   positions and computes the Euclidean distance between the two
///   positions of two different indices.
/// </summary>
static long[,] ComputeEuclideanDistanceMatrix(in int[,] locations)
{
    // Calculate the distance matrix using Euclidean distance.
    int locationNumber = locations.GetLength(0);
    long[,] distanceMatrix = new long[locationNumber, locationNumber];
    for (int fromNode = 0; fromNode < locationNumber; fromNode++)
    {
        for (int toNode = 0; toNode < locationNumber; toNode++)
        {
            if (fromNode == toNode)
                distanceMatrix[fromNode, toNode] = 0;
            else
                distanceMatrix[fromNode, toNode] =
                    (long)Math.Sqrt(Math.Pow(locations[toNode, 0] - locations[fromNode, 0], 2) +
                                    Math.Pow(locations[toNode, 1] - locations[fromNode, 1], 2));
        }
    }
    return distanceMatrix;
}

پاسخ تماس فاصله را اضافه کنید

کدی که فاصله تماس را ایجاد می کند تقریباً مشابه مثال قبلی است. با این حال، در این مورد، برنامه تابعی را که ماتریس فاصله را قبل از اضافه کردن تماس برگشتی محاسبه می کند، فراخوانی می کند.

پایتون

distance_matrix = compute_euclidean_distance_matrix(data["locations"])

def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return distance_matrix[from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

const auto distance_matrix = ComputeEuclideanDistanceMatrix(data.locations);
const int transit_callback_index = routing.RegisterTransitCallback(
    [&distance_matrix, &manager](const int64_t from_index,
                                 const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to distance matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return distance_matrix[from_node][to_node];
    });
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

جاوا

final long[][] distanceMatrix = computeEuclideanDistanceMatrix(data.locations);
final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return distanceMatrix[fromNode][toNode];
    });
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

سی شارپ

long[,] distanceMatrix = ComputeEuclideanDistanceMatrix(data.Locations);
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to
                                                               // distance matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return distanceMatrix[fromNode, toNode];
                                                           });
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

چاپگر راه حل

تابع زیر راه حل را در کنسول چاپ می کند. برای فشرده نگه داشتن خروجی، این تابع فقط شاخص های مکان های مسیر را نمایش می دهد.

پایتون

def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    index = routing.Start(0)
    plan_output = "Route:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Objective: {route_distance}m\n"

C++

//! @brief Print the solution
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  LOG(INFO) << "Objective: " << solution.ObjectiveValue();
  // Inspect solution.
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

جاوا

/// @brief Print the solution.
static void printSolution(
    RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective: " + solution.objectiveValue());
  // Inspect solution.
  logger.info("Route:");
  long routeDistance = 0;
  String route = "";
  long index = routing.start(0);
  while (!routing.isEnd(index)) {
    route += manager.indexToNode(index) + " -> ";
    long previousIndex = index;
    index = solution.value(routing.nextVar(index));
    routing.getArcCostForVehicle(previousIndex, index, 0);
  }
  route += manager.indexToNode(routing.end(0));
  logger.info(route);
  logger.info("Route distance: " + routeDistance);
}

سی شارپ

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
{
    Console.WriteLine("Objective: {0}", solution.ObjectiveValue());
    // Inspect solution.
    Console.WriteLine("Route:");
    long routeDistance = 0;
    var index = routing.Start(0);
    while (routing.IsEnd(index) == false)
    {
        Console.Write("{0} -> ", manager.IndexToNode((int)index));
        var previousIndex = index;
        index = solution.Value(routing.NextVar(index));
        routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
    }
    Console.WriteLine("{0}", manager.IndexToNode((int)index));
    Console.WriteLine("Route distance: {0}m", routeDistance);
}

عملکرد اصلی

تابع اصلی اساساً مانند نمونه قبلی است، اما شامل فراخوانی تابعی است که ماتریس فاصله را ایجاد می کند.

اجرای برنامه

برنامه های کامل در بخش بعدی نشان داده شده است. هنگامی که برنامه را اجرا می کنید، مسیر زیر را نمایش می دهد:

Total distance: 2790

Route of vehicle 0:
0 -> 1 -> 279 -> 2 -> 278 -> 277 -> 247 -> 248 -> 249 -> 246 -> 244 -> 243 -> 242 -> 241 -> 240 ->
239 -> 238 -> 237 -> 236 -> 235 -> 234 -> 233 -> 232 -> 231 -> 230 -> 245 -> 250 -> 229 -> 228 ->
227 -> 226 -> 225 -> 224 -> 223 -> 222 -> 221 -> 220 -> 219 -> 218 -> 217 -> 216 -> 215 -> 214 ->
213 -> 212 -> 211 -> 210 -> 209 -> 208 -> 251 -> 254 -> 255 -> 257 -> 256 -> 253 -> 252 -> 207 ->
206 -> 205 -> 204 -> 203 -> 202 -> 142 -> 141 -> 146 -> 147 -> 140 -> 139 -> 265 -> 136 -> 137 ->
138 -> 148 -> 149 -> 177 -> 176 -> 175 -> 178 -> 179 -> 180 -> 181 -> 182 -> 183 -> 184 -> 186 ->
185 -> 192 -> 196 -> 197 -> 198 -> 144 -> 145 -> 143 -> 199 -> 201 -> 200 -> 195 -> 194 -> 193 ->
191 -> 190 -> 189 -> 188 -> 187 -> 163 -> 164 -> 165 -> 166 -> 167 -> 168 -> 169 -> 171 -> 170 ->
172 -> 105 -> 106 -> 104 -> 103 -> 107 -> 109 -> 110 -> 113 -> 114 -> 116 -> 117 -> 61 -> 62 ->
63 -> 65 -> 64 -> 84 -> 85 -> 115 -> 112 -> 86 -> 83 -> 82 -> 87 -> 111 -> 108 -> 89 -> 90 -> 91 ->
102 -> 101 -> 100 -> 99 -> 98 -> 97 -> 96 -> 95 -> 94 -> 93 -> 92 -> 79 -> 88 -> 81 -> 80 -> 78 ->
77 -> 76 -> 74 -> 75 -> 73 -> 72 -> 71 -> 70 -> 69 -> 66 -> 68 -> 67 -> 57 -> 56 -> 55 -> 54 ->
53 -> 52 -> 51 -> 50 -> 49 -> 48 -> 47 -> 46 -> 45 -> 44 -> 43 -> 58 -> 60 -> 59 -> 42 -> 41 ->
40 -> 39 -> 38 -> 37 -> 36 -> 35 -> 34 -> 33 -> 32 -> 31 -> 30 -> 29 -> 124 -> 123 -> 122 -> 121 ->
120 -> 119 -> 118 -> 156 -> 157 -> 158 -> 173 -> 162 -> 161 -> 160 -> 174 -> 159 -> 150 -> 151 ->
155 -> 152 -> 154 -> 153 -> 128 -> 129 -> 130 -> 131 -> 18 -> 19 -> 20 -> 127 -> 126 -> 125 -> 28 ->
27 -> 26 -> 25 -> 21 -> 24 -> 22 -> 23 -> 13 -> 12 -> 14 -> 11 -> 10 -> 9 -> 7 -> 8 -> 6 -> 5 ->
275 -> 274 -> 273 -> 272 -> 271 -> 270 -> 15 -> 16 -> 17 -> 132 -> 133 -> 269 -> 268 -> 134 ->
135 -> 267 -> 266 -> 264 -> 263 -> 262 -> 261 -> 260 -> 258 -> 259 -> 276 -> 3 -> 4 -> 0

در اینجا نموداری از مسیر مربوطه آمده است:

کتابخانه OR-Tools تور فوق را خیلی سریع پیدا می کند: در کمتر از یک ثانیه در یک کامپیوتر معمولی. طول کل تور فوق 2790 می باشد.

برنامه های کامل

در اینجا برنامه های کامل برای مثال برد مدار آمده است.

پایتون

"""Simple Travelling Salesperson Problem (TSP) on a circuit board."""

import math
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    # Locations in block units
    data["locations"] = [
        # fmt: off
      (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157),
      (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169),
      (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145),
      (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169),
      (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153),
      (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165),
      (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129),
      (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153),
      (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145),
      (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113),
      (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89),
      (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81),
      (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41),
      (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73),
      (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43),
      (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17),
      (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25),
      (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49),
      (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73),
      (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105),
      (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145),
      (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137),
      (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93),
      (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53),
      (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85),
      (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101),
      (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41),
      (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9),
      (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49),
      (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61),
      (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21),
      (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9),
      (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37),
      (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57),
      (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69),
      (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45),
      (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21),
      (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61),
      (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53),
      (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93),
      (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85),
      (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85),
      (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109),
      (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101),
      (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125),
      (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145),
      (246, 141), (252, 125), (260, 129), (280, 133)
        # fmt: on
    ]
    data["num_vehicles"] = 1
    data["depot"] = 0
    return data


def compute_euclidean_distance_matrix(locations):
    """Creates callback to return distance between points."""
    distances = {}
    for from_counter, from_node in enumerate(locations):
        distances[from_counter] = {}
        for to_counter, to_node in enumerate(locations):
            if from_counter == to_counter:
                distances[from_counter][to_counter] = 0
            else:
                # Euclidean distance
                distances[from_counter][to_counter] = int(
                    math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1]))
                )
    return distances


def print_solution(manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    index = routing.Start(0)
    plan_output = "Route:\n"
    route_distance = 0
    while not routing.IsEnd(index):
        plan_output += f" {manager.IndexToNode(index)} ->"
        previous_index = index
        index = solution.Value(routing.NextVar(index))
        route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Objective: {route_distance}m\n"


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["locations"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    distance_matrix = compute_euclidean_distance_matrix(data["locations"])

    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return distance_matrix[from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cmath>
#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int>> locations{
      {288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157}, {246, 157},
      {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
      {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145},
      {156, 145}, {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169},
      {156, 169}, {140, 169}, {132, 169}, {124, 169}, {116, 161}, {104, 153},
      {104, 161}, {104, 169}, {90, 165},  {80, 157},  {64, 157},  {64, 165},
      {56, 169},  {56, 161},  {56, 153},  {56, 145},  {56, 137},  {56, 129},
      {56, 121},  {40, 121},  {40, 129},  {40, 137},  {40, 145},  {40, 153},
      {40, 161},  {40, 169},  {32, 169},  {32, 161},  {32, 153},  {32, 145},
      {32, 137},  {32, 129},  {32, 121},  {32, 113},  {40, 113},  {56, 113},
      {56, 105},  {48, 99},   {40, 99},   {32, 97},   {32, 89},   {24, 89},
      {16, 97},   {16, 109},  {8, 109},   {8, 97},    {8, 89},    {8, 81},
      {8, 73},    {8, 65},    {8, 57},    {16, 57},   {8, 49},    {8, 41},
      {24, 45},   {32, 41},   {32, 49},   {32, 57},   {32, 65},   {32, 73},
      {32, 81},   {40, 83},   {40, 73},   {40, 63},   {40, 51},   {44, 43},
      {44, 35},   {44, 27},   {32, 25},   {24, 25},   {16, 25},   {16, 17},
      {24, 17},   {32, 17},   {44, 11},   {56, 9},    {56, 17},   {56, 25},
      {56, 33},   {56, 41},   {64, 41},   {72, 41},   {72, 49},   {56, 49},
      {48, 51},   {56, 57},   {56, 65},   {48, 63},   {48, 73},   {56, 73},
      {56, 81},   {48, 83},   {56, 89},   {56, 97},   {104, 97},  {104, 105},
      {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
      {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137},
      {164, 137}, {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93},
      {172, 85},  {180, 85},  {180, 77},  {180, 69},  {180, 61},  {180, 53},
      {172, 53},  {172, 61},  {172, 69},  {172, 77},  {164, 81},  {148, 85},
      {124, 85},  {124, 93},  {124, 109}, {124, 125}, {124, 117}, {124, 101},
      {104, 89},  {104, 81},  {104, 73},  {104, 65},  {104, 49},  {104, 41},
      {104, 33},  {104, 25},  {104, 17},  {92, 9},    {80, 9},    {72, 9},
      {64, 21},   {72, 25},   {80, 25},   {80, 25},   {80, 41},   {88, 49},
      {104, 57},  {124, 69},  {124, 77},  {132, 81},  {140, 65},  {132, 61},
      {124, 61},  {124, 53},  {124, 45},  {124, 37},  {124, 29},  {132, 21},
      {124, 21},  {120, 9},   {128, 9},   {136, 9},   {148, 9},   {162, 9},
      {156, 25},  {172, 21},  {180, 21},  {180, 29},  {172, 29},  {172, 37},
      {172, 45},  {180, 45},  {180, 37},  {188, 41},  {196, 49},  {204, 57},
      {212, 65},  {220, 73},  {228, 69},  {228, 77},  {236, 77},  {236, 69},
      {236, 61},  {228, 61},  {228, 53},  {236, 53},  {236, 45},  {228, 45},
      {228, 37},  {236, 37},  {236, 29},  {228, 29},  {228, 21},  {236, 21},
      {252, 21},  {260, 29},  {260, 37},  {260, 45},  {260, 53},  {260, 61},
      {260, 69},  {260, 77},  {276, 77},  {276, 69},  {276, 61},  {276, 53},
      {284, 53},  {284, 61},  {284, 69},  {284, 77},  {284, 85},  {284, 93},
      {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93},  {276, 85},
      {268, 97},  {260, 109}, {252, 101}, {260, 93},  {260, 85},  {236, 85},
      {228, 85},  {228, 93},  {236, 93},  {236, 101}, {228, 101}, {228, 109},
      {228, 117}, {228, 125}, {220, 125}, {212, 117}, {204, 109}, {196, 101},
      {188, 93},  {180, 93},  {180, 101}, {180, 109}, {180, 117}, {180, 125},
      {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145}, {236, 145},
      {246, 141}, {252, 125}, {260, 129}, {280, 133},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
};

// @brief Generate distance matrix.
std::vector<std::vector<int64_t>> ComputeEuclideanDistanceMatrix(
    const std::vector<std::vector<int>>& locations) {
  std::vector<std::vector<int64_t>> distances =
      std::vector<std::vector<int64_t>>(
          locations.size(), std::vector<int64_t>(locations.size(), int64_t{0}));
  for (int from_node = 0; from_node < locations.size(); from_node++) {
    for (int to_node = 0; to_node < locations.size(); to_node++) {
      if (from_node != to_node)
        distances[from_node][to_node] = static_cast<int64_t>(
            std::hypot((locations[to_node][0] - locations[from_node][0]),
                       (locations[to_node][1] - locations[from_node][1])));
    }
  }
  return distances;
}

//! @brief Print the solution
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  LOG(INFO) << "Objective: " << solution.ObjectiveValue();
  // Inspect solution.
  int64_t index = routing.Start(0);
  LOG(INFO) << "Route:";
  int64_t distance{0};
  std::stringstream route;
  while (!routing.IsEnd(index)) {
    route << manager.IndexToNode(index).value() << " -> ";
    const int64_t previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Route distance: " << distance << "miles";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void Tsp() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.locations.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  const auto distance_matrix = ComputeEuclideanDistanceMatrix(data.locations);
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&distance_matrix, &manager](const int64_t from_index,
                                   const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::Tsp();
  return EXIT_SUCCESS;
}

جاوا

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;


/** Minimal TSP. */
public class TspCircuitBoard {
  private static final Logger logger = Logger.getLogger(TspCircuitBoard.class.getName());

  static class DataModel {
    public final int[][] locations = {{288, 149}, {288, 129}, {270, 133}, {256, 141}, {256, 157},
        {246, 157}, {236, 169}, {228, 169}, {228, 161}, {220, 169}, {212, 169}, {204, 169},
        {196, 169}, {188, 169}, {196, 161}, {188, 145}, {172, 145}, {164, 145}, {156, 145},
        {148, 145}, {140, 145}, {148, 169}, {164, 169}, {172, 169}, {156, 169}, {140, 169},
        {132, 169}, {124, 169}, {116, 161}, {104, 153}, {104, 161}, {104, 169}, {90, 165},
        {80, 157}, {64, 157}, {64, 165}, {56, 169}, {56, 161}, {56, 153}, {56, 145}, {56, 137},
        {56, 129}, {56, 121}, {40, 121}, {40, 129}, {40, 137}, {40, 145}, {40, 153}, {40, 161},
        {40, 169}, {32, 169}, {32, 161}, {32, 153}, {32, 145}, {32, 137}, {32, 129}, {32, 121},
        {32, 113}, {40, 113}, {56, 113}, {56, 105}, {48, 99}, {40, 99}, {32, 97}, {32, 89},
        {24, 89}, {16, 97}, {16, 109}, {8, 109}, {8, 97}, {8, 89}, {8, 81}, {8, 73}, {8, 65},
        {8, 57}, {16, 57}, {8, 49}, {8, 41}, {24, 45}, {32, 41}, {32, 49}, {32, 57}, {32, 65},
        {32, 73}, {32, 81}, {40, 83}, {40, 73}, {40, 63}, {40, 51}, {44, 43}, {44, 35}, {44, 27},
        {32, 25}, {24, 25}, {16, 25}, {16, 17}, {24, 17}, {32, 17}, {44, 11}, {56, 9}, {56, 17},
        {56, 25}, {56, 33}, {56, 41}, {64, 41}, {72, 41}, {72, 49}, {56, 49}, {48, 51}, {56, 57},
        {56, 65}, {48, 63}, {48, 73}, {56, 73}, {56, 81}, {48, 83}, {56, 89}, {56, 97}, {104, 97},
        {104, 105}, {104, 113}, {104, 121}, {104, 129}, {104, 137}, {104, 145}, {116, 145},
        {124, 145}, {132, 145}, {132, 137}, {140, 137}, {148, 137}, {156, 137}, {164, 137},
        {172, 125}, {172, 117}, {172, 109}, {172, 101}, {172, 93}, {172, 85}, {180, 85}, {180, 77},
        {180, 69}, {180, 61}, {180, 53}, {172, 53}, {172, 61}, {172, 69}, {172, 77}, {164, 81},
        {148, 85}, {124, 85}, {124, 93}, {124, 109}, {124, 125}, {124, 117}, {124, 101}, {104, 89},
        {104, 81}, {104, 73}, {104, 65}, {104, 49}, {104, 41}, {104, 33}, {104, 25}, {104, 17},
        {92, 9}, {80, 9}, {72, 9}, {64, 21}, {72, 25}, {80, 25}, {80, 25}, {80, 41}, {88, 49},
        {104, 57}, {124, 69}, {124, 77}, {132, 81}, {140, 65}, {132, 61}, {124, 61}, {124, 53},
        {124, 45}, {124, 37}, {124, 29}, {132, 21}, {124, 21}, {120, 9}, {128, 9}, {136, 9},
        {148, 9}, {162, 9}, {156, 25}, {172, 21}, {180, 21}, {180, 29}, {172, 29}, {172, 37},
        {172, 45}, {180, 45}, {180, 37}, {188, 41}, {196, 49}, {204, 57}, {212, 65}, {220, 73},
        {228, 69}, {228, 77}, {236, 77}, {236, 69}, {236, 61}, {228, 61}, {228, 53}, {236, 53},
        {236, 45}, {228, 45}, {228, 37}, {236, 37}, {236, 29}, {228, 29}, {228, 21}, {236, 21},
        {252, 21}, {260, 29}, {260, 37}, {260, 45}, {260, 53}, {260, 61}, {260, 69}, {260, 77},
        {276, 77}, {276, 69}, {276, 61}, {276, 53}, {284, 53}, {284, 61}, {284, 69}, {284, 77},
        {284, 85}, {284, 93}, {284, 101}, {288, 109}, {280, 109}, {276, 101}, {276, 93}, {276, 85},
        {268, 97}, {260, 109}, {252, 101}, {260, 93}, {260, 85}, {236, 85}, {228, 85}, {228, 93},
        {236, 93}, {236, 101}, {228, 101}, {228, 109}, {228, 117}, {228, 125}, {220, 125},
        {212, 117}, {204, 109}, {196, 101}, {188, 93}, {180, 93}, {180, 101}, {180, 109},
        {180, 117}, {180, 125}, {196, 145}, {204, 145}, {212, 145}, {220, 145}, {228, 145},
        {236, 145}, {246, 141}, {252, 125}, {260, 129}, {280, 133}};
    public final int vehicleNumber = 1;
    public final int depot = 0;
  }

  /// @brief Compute Euclidean distance matrix from locations array.
  /// @details It uses an array of locations and computes
  /// the Euclidean distance between any two locations.
  private static long[][] computeEuclideanDistanceMatrix(int[][] locations) {
    // Calculate distance matrix using Euclidean distance.
    long[][] distanceMatrix = new long[locations.length][locations.length];
    for (int fromNode = 0; fromNode < locations.length; ++fromNode) {
      for (int toNode = 0; toNode < locations.length; ++toNode) {
        if (fromNode == toNode) {
          distanceMatrix[fromNode][toNode] = 0;
        } else {
          distanceMatrix[fromNode][toNode] =
              (long) Math.hypot(locations[toNode][0] - locations[fromNode][0],
                  locations[toNode][1] - locations[fromNode][1]);
        }
      }
    }
    return distanceMatrix;
  }

  /// @brief Print the solution.
  static void printSolution(
      RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    logger.info("Route:");
    long routeDistance = 0;
    String route = "";
    long index = routing.start(0);
    while (!routing.isEnd(index)) {
      route += manager.indexToNode(index) + " -> ";
      long previousIndex = index;
      index = solution.value(routing.nextVar(index));
      routing.getArcCostForVehicle(previousIndex, index, 0);
    }
    route += manager.indexToNode(routing.end(0));
    logger.info(route);
    logger.info("Route distance: " + routeDistance);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.locations.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final long[][] distanceMatrix = computeEuclideanDistanceMatrix(data.locations);
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(routing, manager, solution);
  }
}

سی شارپ

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal TSP.
///   A description of the problem can be found here:
///   http://en.wikipedia.org/wiki/Travelling_salesperson_problem.
/// </summary>
public class TspCircuitBoard
{
    class DataModel
    {
        public int[,] Locations = {
            { 288, 149 }, { 288, 129 }, { 270, 133 }, { 256, 141 }, { 256, 157 }, { 246, 157 }, { 236, 169 },
            { 228, 169 }, { 228, 161 }, { 220, 169 }, { 212, 169 }, { 204, 169 }, { 196, 169 }, { 188, 169 },
            { 196, 161 }, { 188, 145 }, { 172, 145 }, { 164, 145 }, { 156, 145 }, { 148, 145 }, { 140, 145 },
            { 148, 169 }, { 164, 169 }, { 172, 169 }, { 156, 169 }, { 140, 169 }, { 132, 169 }, { 124, 169 },
            { 116, 161 }, { 104, 153 }, { 104, 161 }, { 104, 169 }, { 90, 165 },  { 80, 157 },  { 64, 157 },
            { 64, 165 },  { 56, 169 },  { 56, 161 },  { 56, 153 },  { 56, 145 },  { 56, 137 },  { 56, 129 },
            { 56, 121 },  { 40, 121 },  { 40, 129 },  { 40, 137 },  { 40, 145 },  { 40, 153 },  { 40, 161 },
            { 40, 169 },  { 32, 169 },  { 32, 161 },  { 32, 153 },  { 32, 145 },  { 32, 137 },  { 32, 129 },
            { 32, 121 },  { 32, 113 },  { 40, 113 },  { 56, 113 },  { 56, 105 },  { 48, 99 },   { 40, 99 },
            { 32, 97 },   { 32, 89 },   { 24, 89 },   { 16, 97 },   { 16, 109 },  { 8, 109 },   { 8, 97 },
            { 8, 89 },    { 8, 81 },    { 8, 73 },    { 8, 65 },    { 8, 57 },    { 16, 57 },   { 8, 49 },
            { 8, 41 },    { 24, 45 },   { 32, 41 },   { 32, 49 },   { 32, 57 },   { 32, 65 },   { 32, 73 },
            { 32, 81 },   { 40, 83 },   { 40, 73 },   { 40, 63 },   { 40, 51 },   { 44, 43 },   { 44, 35 },
            { 44, 27 },   { 32, 25 },   { 24, 25 },   { 16, 25 },   { 16, 17 },   { 24, 17 },   { 32, 17 },
            { 44, 11 },   { 56, 9 },    { 56, 17 },   { 56, 25 },   { 56, 33 },   { 56, 41 },   { 64, 41 },
            { 72, 41 },   { 72, 49 },   { 56, 49 },   { 48, 51 },   { 56, 57 },   { 56, 65 },   { 48, 63 },
            { 48, 73 },   { 56, 73 },   { 56, 81 },   { 48, 83 },   { 56, 89 },   { 56, 97 },   { 104, 97 },
            { 104, 105 }, { 104, 113 }, { 104, 121 }, { 104, 129 }, { 104, 137 }, { 104, 145 }, { 116, 145 },
            { 124, 145 }, { 132, 145 }, { 132, 137 }, { 140, 137 }, { 148, 137 }, { 156, 137 }, { 164, 137 },
            { 172, 125 }, { 172, 117 }, { 172, 109 }, { 172, 101 }, { 172, 93 },  { 172, 85 },  { 180, 85 },
            { 180, 77 },  { 180, 69 },  { 180, 61 },  { 180, 53 },  { 172, 53 },  { 172, 61 },  { 172, 69 },
            { 172, 77 },  { 164, 81 },  { 148, 85 },  { 124, 85 },  { 124, 93 },  { 124, 109 }, { 124, 125 },
            { 124, 117 }, { 124, 101 }, { 104, 89 },  { 104, 81 },  { 104, 73 },  { 104, 65 },  { 104, 49 },
            { 104, 41 },  { 104, 33 },  { 104, 25 },  { 104, 17 },  { 92, 9 },    { 80, 9 },    { 72, 9 },
            { 64, 21 },   { 72, 25 },   { 80, 25 },   { 80, 25 },   { 80, 41 },   { 88, 49 },   { 104, 57 },
            { 124, 69 },  { 124, 77 },  { 132, 81 },  { 140, 65 },  { 132, 61 },  { 124, 61 },  { 124, 53 },
            { 124, 45 },  { 124, 37 },  { 124, 29 },  { 132, 21 },  { 124, 21 },  { 120, 9 },   { 128, 9 },
            { 136, 9 },   { 148, 9 },   { 162, 9 },   { 156, 25 },  { 172, 21 },  { 180, 21 },  { 180, 29 },
            { 172, 29 },  { 172, 37 },  { 172, 45 },  { 180, 45 },  { 180, 37 },  { 188, 41 },  { 196, 49 },
            { 204, 57 },  { 212, 65 },  { 220, 73 },  { 228, 69 },  { 228, 77 },  { 236, 77 },  { 236, 69 },
            { 236, 61 },  { 228, 61 },  { 228, 53 },  { 236, 53 },  { 236, 45 },  { 228, 45 },  { 228, 37 },
            { 236, 37 },  { 236, 29 },  { 228, 29 },  { 228, 21 },  { 236, 21 },  { 252, 21 },  { 260, 29 },
            { 260, 37 },  { 260, 45 },  { 260, 53 },  { 260, 61 },  { 260, 69 },  { 260, 77 },  { 276, 77 },
            { 276, 69 },  { 276, 61 },  { 276, 53 },  { 284, 53 },  { 284, 61 },  { 284, 69 },  { 284, 77 },
            { 284, 85 },  { 284, 93 },  { 284, 101 }, { 288, 109 }, { 280, 109 }, { 276, 101 }, { 276, 93 },
            { 276, 85 },  { 268, 97 },  { 260, 109 }, { 252, 101 }, { 260, 93 },  { 260, 85 },  { 236, 85 },
            { 228, 85 },  { 228, 93 },  { 236, 93 },  { 236, 101 }, { 228, 101 }, { 228, 109 }, { 228, 117 },
            { 228, 125 }, { 220, 125 }, { 212, 117 }, { 204, 109 }, { 196, 101 }, { 188, 93 },  { 180, 93 },
            { 180, 101 }, { 180, 109 }, { 180, 117 }, { 180, 125 }, { 196, 145 }, { 204, 145 }, { 212, 145 },
            { 220, 145 }, { 228, 145 }, { 236, 145 }, { 246, 141 }, { 252, 125 }, { 260, 129 }, { 280, 133 },
        };
        public int VehicleNumber = 1;
        public int Depot = 0;
    };

    /// <summary>
    ///   Euclidean distance implemented as a callback. It uses an array of
    ///   positions and computes the Euclidean distance between the two
    ///   positions of two different indices.
    /// </summary>
    static long[,] ComputeEuclideanDistanceMatrix(in int[,] locations)
    {
        // Calculate the distance matrix using Euclidean distance.
        int locationNumber = locations.GetLength(0);
        long[,] distanceMatrix = new long[locationNumber, locationNumber];
        for (int fromNode = 0; fromNode < locationNumber; fromNode++)
        {
            for (int toNode = 0; toNode < locationNumber; toNode++)
            {
                if (fromNode == toNode)
                    distanceMatrix[fromNode, toNode] = 0;
                else
                    distanceMatrix[fromNode, toNode] =
                        (long)Math.Sqrt(Math.Pow(locations[toNode, 0] - locations[fromNode, 0], 2) +
                                        Math.Pow(locations[toNode, 1] - locations[fromNode, 1], 2));
            }
        }
        return distanceMatrix;
    }

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution)
    {
        Console.WriteLine("Objective: {0}", solution.ObjectiveValue());
        // Inspect solution.
        Console.WriteLine("Route:");
        long routeDistance = 0;
        var index = routing.Start(0);
        while (routing.IsEnd(index) == false)
        {
            Console.Write("{0} -> ", manager.IndexToNode((int)index));
            var previousIndex = index;
            index = solution.Value(routing.NextVar(index));
            routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
        }
        Console.WriteLine("{0}", manager.IndexToNode((int)index));
        Console.WriteLine("Route distance: {0}m", routeDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.Locations.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Define cost of each arc.
        long[,] distanceMatrix = ComputeEuclideanDistanceMatrix(data.Locations);
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return distanceMatrix[fromNode, toNode];
                                                                   });

        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(routing, manager, solution);
    }
}

تغییر استراتژی جستجو

حل‌کننده مسیریابی همیشه راه‌حل بهینه را به یک TSP برمی‌گرداند، زیرا مسائل مسیریابی از نظر محاسباتی غیرقابل حل هستند. برای مثال، راه حلی که در مثال قبلی برگردانده شد، مسیر بهینه نیست.

برای یافتن راه‌حل بهتر، می‌توانید از یک استراتژی جستجوی پیشرفته‌تر به نام جستجوی محلی هدایت‌شده استفاده کنید، که به حل‌کننده امکان می‌دهد از حداقل محلی فرار کند - راه‌حلی که کوتاه‌تر از همه مسیرهای نزدیک است، اما حداقل جهانی نیست. پس از دور شدن از حداقل محلی، حل کننده به جستجو ادامه می دهد.

مثال‌های زیر نحوه تنظیم یک جستجوی محلی هدایت‌شده برای مثال برد مدار را نشان می‌دهند.

پایتون

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (
    routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.seconds = 30
search_parameters.log_search = True

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_local_search_metaheuristic(
    LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
searchParameters.mutable_time_limit()->set_seconds(30);
search_parameters.set_log_search(true);

جاوا

عبارت «import» زیر را در ابتدای برنامه اضافه کنید:
import com.google.protobuf.Duration;
سپس پارامترهای جستجو را به صورت زیر تنظیم کنید:
RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
            .setTimeLimit(Duration.newBuilder().setSeconds(30).build())
            .setLogSearch(true)
            .build();

سی شارپ

خط زیر را در ابتدای برنامه اضافه کنید:
using Google.Protobuf.WellKnownTypes; // Duration
سپس پارامترهای جستجو را به صورت زیر تنظیم کنید:
RoutingSearchParameters searchParameters =
      operations_research_constraint_solver.DefaultRoutingSearchParameters();
    searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
    searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
    searchParameters.TimeLimit = new Duration { Seconds = 30 };
    searchParameters.LogSearch = true;

برای سایر استراتژی‌های جستجوی محلی، گزینه‌های جستجوی محلی را ببینید.

مثال های بالا همچنین ثبت ورود به سیستم را برای جستجو فعال می کنند. در حالی که ورود به سیستم مورد نیاز نیست، می تواند برای اشکال زدایی مفید باشد.

هنگامی که برنامه را پس از انجام تغییرات نشان داده شده در بالا اجرا می کنید، راه حل زیر را دریافت می کنید که کوتاهتر از راه حل نشان داده شده در بخش قبل است.

Objective: 2672
Route:

0 -> 3 -> 276 -> 4 -> 5 -> 6 -> 8 -> 7 -> 9 -> 10 -> 11 -> 14 -> 12 -> 13 -> 23 -> 22 -> 24 -> 21 ->
25 -> 26 -> 27 -> 28 -> 125 -> 126 -> 127 -> 20 -> 19 -> 130 -> 129 -> 128 -> 153 -> 154 -> 152 ->
155 -> 151 -> 150 -> 177 -> 176 -> 175 -> 180 -> 161 -> 160 -> 174 -> 159 -> 158 -> 157 -> 156 ->
118 -> 119 -> 120 -> 121 -> 122 -> 123 -> 124 -> 29 -> 30 -> 31 -> 32 -> 33 -> 34 -> 35 -> 36 ->
37 -> 38 -> 39 -> 40 -> 41 -> 42 -> 59 -> 60 -> 58 -> 43 -> 44 -> 45 -> 46 -> 47 -> 48 -> 49 ->
50 -> 51 -> 52 -> 53 -> 54 -> 55 -> 56 -> 57 -> 67 -> 68 -> 66 -> 69 -> 70 -> 71 -> 72 -> 73 ->
75 -> 74 -> 76 -> 77 -> 78 -> 80 -> 81 -> 88 -> 79 -> 92 -> 93 -> 94 -> 95 -> 96 -> 97 -> 98 ->
99 -> 100 -> 101 -> 102 -> 91 -> 90 -> 89 -> 108 -> 111 -> 87 -> 82 -> 83 -> 86 -> 112 -> 115 ->
85 -> 84 -> 64 -> 65 -> 63 -> 62 -> 61 -> 117 -> 116 -> 114 -> 113 -> 110 -> 109 -> 107 -> 103 ->
104 -> 105 -> 106 -> 173 -> 172 -> 171 -> 170 -> 169 -> 168 -> 167 -> 166 -> 165 -> 164 -> 163 ->
162 -> 187 -> 188 -> 189 -> 190 -> 191 -> 192 -> 185 -> 186 -> 184 -> 183 -> 182 -> 181 -> 179 ->
178 -> 149 -> 148 -> 138 -> 137 -> 136 -> 266 -> 267 -> 135 -> 134 -> 268 -> 269 -> 133 -> 132 ->
131 -> 18 -> 17 -> 16 -> 15 -> 270 -> 271 -> 272 -> 273 -> 274 -> 275 -> 259 -> 258 -> 260 -> 261 ->
262 -> 263 -> 264 -> 265 -> 139 -> 140 -> 147 -> 146 -> 141 -> 142 -> 145 -> 144 -> 198 -> 197 ->
196 -> 193 -> 194 -> 195 -> 200 -> 201 -> 199 -> 143 -> 202 -> 203 -> 204 -> 205 -> 206 -> 207 ->
252 -> 253 -> 256 -> 257 -> 255 -> 254 -> 251 -> 208 -> 209 -> 210 -> 211 -> 212 -> 213 -> 214 ->
215 -> 216 -> 217 -> 218 -> 219 -> 220 -> 221 -> 222 -> 223 -> 224 -> 225 -> 226 -> 227 -> 232 ->
233 -> 234 -> 235 -> 236 -> 237 -> 230 -> 231 -> 228 -> 229 -> 250 -> 245 -> 238 -> 239 -> 240 ->
241 -> 242 -> 243 -> 244 -> 246 -> 249 -> 248 -> 247 -> 277 -> 278 -> 2 -> 279 -> 1 -> 0

برای گزینه‌های جستجوی بیشتر، گزینه‌های مسیریابی را ببینید.

بهترین الگوریتم ها اکنون می توانند به طور معمول نمونه های TSP را با ده ها هزار گره حل کنند. (رکورد در زمان نگارش، نمونه pla85900 در TSPLIB است، یک برنامه کاربردی VLSI با 85900 گره. برای نمونه‌های خاصی با میلیون‌ها گره، راه‌حل‌ها تضمین شده است که در 1٪ از یک تور بهینه باشد.)

مقیاس بندی ماتریس فاصله

از آنجایی که حل کننده مسیریابی روی اعداد صحیح کار می کند، اگر ماتریس فاصله شما دارای ورودی های غیر صحیح باشد، باید فاصله ها را به اعداد صحیح گرد کنید. اگر برخی از فواصل کوچک باشند، گرد کردن می تواند روی محلول تاثیر بگذارد.

برای جلوگیری از هرگونه مشکل در گرد کردن، می توانید ماتریس فاصله را scale کنید: همه ورودی های ماتریس را در یک عدد بزرگ ضرب کنید - مثلاً 100. این طول هر مسیر را در ضریب 100 ضرب می کند، اما جواب را تغییر نمی دهد. مزیت این است که اکنون وقتی ورودی های ماتریس را گرد می کنید، مقدار گرد کردن (که حداکثر 0.5 است)، در مقایسه با فواصل بسیار کوچک است، بنابراین تأثیر قابل توجهی روی راه حل نخواهد داشت.

اگر ماتریس فاصله را مقیاس بندی می کنید، باید چاپگر محلول را نیز تغییر دهید تا طول مسیرهای مقیاس شده را بر ضریب مقیاس بندی تقسیم کند تا فواصل بدون مقیاس مسیرها را نمایش دهد.