در مسئله مسیریابی خودرو (VRP) ، هدف یافتن مسیرهای بهینه برای چندین وسیله نقلیه است که از مجموعهای از مکانها بازدید میکنند. (زمانی که فقط یک وسیله نقلیه وجود دارد، به مشکل فروشنده مسافر کاهش می یابد.)
اما منظور ما از "مسیرهای بهینه" برای VRP چیست؟ یک پاسخ مسیرهایی با کمترین مسافت کل است. با این حال، اگر هیچ محدودیت دیگری وجود نداشته باشد، راهحل بهینه این است که فقط یک وسیله نقلیه را برای بازدید از همه مکانها اختصاص دهید و کوتاهترین مسیر را برای آن وسیله نقلیه پیدا کنید. این در اصل همان مشکل TSP است.
یک راه بهتر برای تعریف مسیرهای بهینه، به حداقل رساندن طول طولانی ترین مسیر منفرد در بین تمام وسایل نقلیه است. این تعریف درستی است اگر هدف این باشد که تمام تحویلها در اسرع وقت تکمیل شود. مثال VRP زیر مسیرهای بهینه تعریف شده را پیدا می کند.
در بخشهای بعدی، روشهای دیگر تعمیم TSP را با اضافه کردن محدودیتهایی بر روی خودروها، از جمله:
- محدودیتهای ظرفیت : وسایل نقلیه باید از هر مکانی که بازدید میکنند اقلام را تحویل بگیرند، اما حداکثر ظرفیت حمل را دارند.
- پنجره های زمانی : هر مکان باید در یک پنجره زمانی خاص بازدید شود.
مثال VRP
این بخش نمونه ای از یک VRP را ارائه می دهد که در آن هدف به حداقل رساندن طولانی ترین مسیر منفرد است.
شرکتی را تصور کنید که باید در شهری متشکل از بلوک های مستطیلی یکسان از مشتریان خود بازدید کند. نموداری از شهر در زیر نشان داده شده است که محل شرکت با رنگ مشکی و مکانهایی که باید بازدید کنید با رنگ آبی مشخص شده است.
حل مثال VRP با OR-Tools
بخش های زیر نحوه حل مثال VRP با OR-Tools را توضیح می دهند.
داده ها را ایجاد کنید
تابع زیر داده های مشکل را ایجاد می کند.
پایتون
def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["num_vehicles"] = 4 data["depot"] = 0 return data
C++
struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; };
جاوا
static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int vehicleNumber = 4; public final int depot = 0; }
سی شارپ
class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int VehicleNumber = 4; public int Depot = 0; };
داده ها عبارتند از:
-
distance_matrix
: آرایه ای از فواصل بین مکان ها بر حسب متر. -
num_vehicles
: تعداد وسایل نقلیه در ناوگان. -
depot
: نمایه دپو، مکانی که همه وسایل نقلیه از آنجا شروع و به مسیر خود خاتمه می دهند.
مختصات مکان
برای تنظیم مثال و محاسبه ماتریس فاصله، مختصات x
- y
زیر را به مکان های نشان داده شده در نمودار شهر اختصاص داده ایم:
[(456, 320), # location 0 - the depot (228, 0), # location 1 (912, 0), # location 2 (0, 80), # location 3 (114, 80), # location 4 (570, 160), # location 5 (798, 160), # location 6 (342, 240), # location 7 (684, 240), # location 8 (570, 400), # location 9 (912, 400), # location 10 (114, 480), # location 11 (228, 480), # location 12 (342, 560), # location 13 (684, 560), # location 14 (0, 640), # location 15 (798, 640)] # location 16
توجه داشته باشید که مختصات مکان در داده های مسئله گنجانده نشده است: تنها چیزی که برای حل مشکل نیاز دارید ماتریس فاصله است که ما از قبل آن را محاسبه کرده ایم. شما فقط به داده های مکان برای شناسایی مکان های موجود در راه حل نیاز دارید که با شاخص های آنها (0، 1، 2 ...) در لیست بالا مشخص شده اند.
هدف اصلی از نشان دادن مختصات مکان و نمودار شهر در این مثال و نمونه های دیگر، ارائه نمایش تصویری از مشکل و راه حل آن است. اما این برای حل یک VRP ضروری نیست.
برای سهولت در تنظیم مسئله، فواصل بین مکان ها با استفاده از فاصله منهتن محاسبه می شود که در آن فاصله بین دو نقطه ( x 1 ، y 1 ) و ( x2 ، y 2 ) به صورت | x 1 - x 2 | + | y 1 - y 2 |. با این حال، دلیل خاصی برای استفاده از این تعریف وجود ندارد. شما می توانید از هر روشی که برای مشکل شما مناسب تر است برای محاسبه فاصله ها استفاده کنید. یا، میتوانید با استفاده از Google Distance Matrix API یک ماتریس فاصله برای هر مجموعه ای از مکانها در جهان به دست آورید. برای مثالی از نحوه انجام این کار، Distance Matrix API را ببینید.
فاصله تماس را تعریف کنید
همانطور که در مثال TSP ، تابع زیر فاصله تماس را ایجاد می کند، که فواصل بین مکان ها را برمی گرداند و آن را به حل کننده ارسال می کند. همچنین هزینههای قوس را که هزینه سفر را مشخص میکند، بهعنوان فاصله کمانها تعیین میکند.
پایتون
def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
C++
const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
جاوا
final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
سی شارپ
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
یک بعد فاصله اضافه کنید
برای حل این VRP، باید یک بعد فاصله ایجاد کنید، که مسافت تجمعی طی شده توسط هر وسیله نقلیه در طول مسیر خود را محاسبه می کند. سپس می توانید هزینه ای متناسب با حداکثر مسافت کل در هر مسیر تعیین کنید. برنامههای مسیریابی از ابعاد استفاده میکنند تا مقادیری را که در مسیر یک وسیله نقلیه جمع میشوند، پیگیری کنند. برای جزئیات بیشتر به ابعاد مراجعه کنید.
کد زیر بعد فاصله را با استفاده از روش AddDimension
حل کننده ایجاد می کند. آرگومان transit_callback_index
شاخص فاصله_کال بک است.
پایتون
dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100)
C++
routing.AddDimension(transit_callback_index, 0, 3000, true, // start cumul to zero "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100);
جاوا
routing.addDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100);
سی شارپ
routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100);
روش SetGlobalSpanCostCoefficient
یک ضریب بزرگ ( 100
) برای دهانه سراسری مسیرها تعیین می کند که در این مثال حداکثر فاصله مسیرها است. این باعث می شود که دهانه جهانی به عامل غالب در تابع هدف تبدیل شود، بنابراین برنامه طول طولانی ترین مسیر را به حداقل می رساند.
چاپگر محلول را اضافه کنید
تابعی که راه حل را چاپ می کند در زیر نشان داده شده است.
پایتون
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m")
C++
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
جاوا
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); }
سی شارپ
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance); }
این تابع مسیرهای وسایل نقلیه و مسافت کل مسیرها را نشان می دهد.
یا می توانید ابتدا مسیرها را در یک لیست یا آرایه ذخیره کنید و سپس آنها را چاپ کنید.
عملکرد اصلی
بیشتر کدهای تابع اصلی برای برنامه VRP مانند مثال قبلی TSP است. برای توضیح آن کد به بخش TSP مراجعه کنید. چیزی که جدید است بعد فاصله است که در بالا توضیح داده شد.
اجرای برنامه ها
برنامه های کامل در بخش بعدی نشان داده شده است. وقتی برنامه ها را اجرا می کنید، خروجی زیر را نمایش می دهند:
Objective: 177500 Route for vehicle 0: 0 -> 9 -> 10 -> 2 -> 6 -> 5 -> 0 Distance of the route: 1712m Route for vehicle 1: 0 -> 16 -> 14 -> 8 -> 0 Distance of the route: 1484m Route for vehicle 2: 0 -> 7 -> 1 -> 4 -> 3 -> 0 Distance of the route: 1552m Route for vehicle 3: 0 -> 13 -> 15 -> 11 -> 12 -> 0 Distance of the route: 1552m Maximum of the route distances: 1712m
مکان های موجود در مسیرها با شاخص های خود در لیست مکان ها مشخص می شوند. همه مسیرها در انبار شروع و به پایان می رسند ( 0
).
نمودار زیر مسیرهای تعیین شده را نشان می دهد که در آن شاخص های مکان به مختصات x
- y
مربوطه تبدیل شده اند.
برنامه های کامل
برنامه های کاملی که طولانی ترین مسیر را به حداقل می رساند در زیر نشان داده شده است.
پایتون
"""Simple Vehicles Routing Problem (VRP). This is a sample using the routing library python wrapper to solve a VRP problem. A description of the problem can be found here: http://en.wikipedia.org/wiki/Vehicle_routing_problem. Distances are in meters. """ from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m") def main(): """Entry point of the program.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Distance constraint. dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) else: print("No solution found !") if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <sstream> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpGlobalSpan() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Distance constraint. routing.AddDimension(transit_callback_index, 0, 3000, true, // start cumul to zero "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. if (solution != nullptr) { PrintSolution(data, manager, routing, *solution); } else { LOG(INFO) << "No solution found."; } } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpGlobalSpan(); return EXIT_SUCCESS; }
جاوا
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** Minimal VRP.*/ public class VrpGlobalSpan { private static final Logger logger = Logger.getLogger(VrpGlobalSpan.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.addDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } }
سی شارپ
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpGlobalSpan { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
با استفاده از Google Distance Matrix API
این بخش نحوه استفاده از Google Distance Matrix API را برای ایجاد ماتریس فاصله برای هر مجموعه ای از مکان های تعریف شده با آدرس ها یا طول و عرض جغرافیایی نشان می دهد. شما می توانید از API برای محاسبه ماتریس فاصله برای بسیاری از انواع مشکلات مسیریابی استفاده کنید.
برای استفاده از API، به یک کلید API نیاز دارید. در اینجا نحوه به دست آوردن یکی آمده است.
مثال
به عنوان مثال، ما از طریق یک برنامه پایتون که ماتریس فاصله را برای مجموعه ای از 16 مکان در شهر ممفیس، تنسی ایجاد می کند، قدم می زنیم. ماتریس فاصله یک ماتریس ۱۶×۱۶ است که ورودی i
، j
فاصله بین مکانهای i
و j
است. در اینجا آدرس مکان ها آمده است.
data['addresses'] = ['3610+Hacks+Cross+Rd+Memphis+TN', # depot '1921+Elvis+Presley+Blvd+Memphis+TN', '149+Union+Avenue+Memphis+TN', '1034+Audubon+Drive+Memphis+TN', '1532+Madison+Ave+Memphis+TN', '706+Union+Ave+Memphis+TN', '3641+Central+Ave+Memphis+TN', '926+E+McLemore+Ave+Memphis+TN', '4339+Park+Ave+Memphis+TN', '600+Goodwyn+St+Memphis+TN', '2000+North+Pkwy+Memphis+TN', '262+Danny+Thomas+Pl+Memphis+TN', '125+N+Front+St+Memphis+TN', '5959+Park+Ave+Memphis+TN', '814+Scott+St+Memphis+TN', '1005+Tillman+St+Memphis+TN' ]
درخواست های API
یک درخواست API Matrix Distance یک رشته طولانی است که شامل موارد زیر است:
- آدرس API:
https://maps.googleapis.com/maps/api/distancematrix/json?
. انتهای درخواست،json
، پاسخ را در JSON میخواهد. - درخواست گزینه ها در این مثال
units=imperial
زبان پاسخ را به انگلیسی تنظیم می کند. - آدرس مبدا: نقاط شروع سفر. به عنوان مثال
&origins=3610+Hacks+Cross+Rd+Memphis+TN
.
فاصله ها در آدرس با کاراکتر+
جایگزین می شود. چندین آدرس با یک|
از هم جدا می شوند . - آدرس های مقصد: نقاط پایانی سفر. برای مثال
&destinations=3734+Elvis+Presley+Blvd+Memphis+TN
- کلید API: اعتبارنامه درخواست، به شکل
&key=YOUR_API_KEY
.
در اینجا کل درخواست برای مبدأ و مقصد واحد نشان داده شده در بالا پس از «آدرسهای مبدا» و «آدرسهای مقصد» آمده است.
https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins=3610+Hacks+Cross+Rd+Memphis+TN&destinations=3734+Elvis+Presley+Blvd+Memphis+TN&key=YOUR_API_KEY
در اینجا پاسخ به درخواست است.
{ "destination_addresses" : [ "1921 Elvis Presley Blvd, Memphis, TN 38106, USA" ], "origin_addresses" : [ "3610 Hacks Cross Rd, Memphis, TN 38125, USA" ], "rows" : [ { "elements" : [ { "distance" : { "text" : "15.2 mi", "value" : 24392 }, "duration" : { "text" : "21 mins", "value" : 1264 }, "status" : "OK" } ] } ], "status" : "OK" }
پاسخ شامل مسافت سفر (بر حسب مایل و متر) و مدت سفر (بر حسب دقیقه و ثانیه) بین دو آدرس است.
برای جزئیات بیشتر درباره درخواستها و پاسخها، به مستندات Distance Matrix API مراجعه کنید.
ماتریس فاصله را محاسبه کنید
برای محاسبه ماتریس فاصله، میخواهیم یک درخواست منفرد حاوی تمام 16 آدرس به عنوان آدرس مبدا و مقصد ارسال کنیم. با این حال، نمیتوانیم، زیرا این به 16x16=256
جفت مبدا-مقصد نیاز دارد، در حالی که API به 100 جفت در هر درخواست محدود شده است. بنابراین باید چندین درخواست داشته باشیم.
از آنجایی که هر ردیف از ماتریس شامل 16 ورودی است، می توانیم حداکثر شش ردیف را برای هر درخواست محاسبه کنیم (که به 6x16=96
جفت نیاز دارد). ما می توانیم کل ماتریس را در سه درخواست محاسبه کنیم که 6 سطر، 6 سطر و 4 سطر را برمی گرداند.
کد زیر ماتریس فاصله را به صورت زیر محاسبه می کند:
- 16 آدرس را به دو گروه شش آدرسی و یک گروه چهار آدرسی تقسیم کنید.
- برای هر گروه، یک درخواست برای آدرس های مبدا در گروه و همه آدرس های مقصد بسازید و ارسال کنید. به ساخت و ارسال درخواست مراجعه کنید.
- از پاسخ برای ساخت ردیف های مربوط به ماتریس استفاده کنید و ردیف ها را (که فقط لیست های پایتون هستند) به هم متصل کنید. به ساخت ردیف های ماتریس فاصله مراجعه کنید.
def create_distance_matrix(data): addresses = data["addresses"] API_key = data["API_key"] # Distance Matrix API only accepts 100 elements per request, so get rows in multiple requests. max_elements = 100 num_addresses = len(addresses) # 16 in this example. # Maximum number of rows that can be computed per request (6 in this example). max_rows = max_elements // num_addresses # num_addresses = q * max_rows + r (q = 2 and r = 4 in this example). q, r = divmod(num_addresses, max_rows) dest_addresses = addresses distance_matrix = [] # Send q requests, returning max_rows rows per request. for i in range(q): origin_addresses = addresses[i * max_rows: (i + 1) * max_rows] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) # Get the remaining remaining r rows, if necessary. if r > 0: origin_addresses = addresses[q * max_rows: q * max_rows + r] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) return distance_matrix
ساخت و ارسال درخواست
تابع زیر درخواستی را برای مجموعه مشخصی از آدرس های مبدا و مقصد می سازد و ارسال می کند.
def send_request(origin_addresses, dest_addresses, API_key): """ Build and send request for the given origin and destination addresses.""" def build_address_str(addresses): # Build a pipe-separated string of addresses address_str = '' for i in range(len(addresses) - 1): address_str += addresses[i] + '|' address_str += addresses[-1] return address_str request = 'https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial' origin_address_str = build_address_str(origin_addresses) dest_address_str = build_address_str(dest_addresses) request = request + '&origins=' + origin_address_str + '&destinations=' + \ dest_address_str + '&key=' + API_key jsonResult = urllib.urlopen(request).read() response = json.loads(jsonResult) return response
تابع فرعی build_address_string
آدرس هایی را که با کاراکتر لوله جدا شده اند، به هم متصل می کند، |
.
کد باقی مانده در تابع، بخش های درخواستی که در بالا توضیح داده شد را جمع آوری می کند و درخواست را ارسال می کند. خط
response = json.loads(jsonResult)
نتیجه خام را به یک شی پایتون تبدیل می کند.
ردیف هایی از ماتریس بسازید
تابع زیر با استفاده از پاسخی که توسط تابع send_request
برگردانده می شود، ردیف هایی از ماتریس فاصله ایجاد می کند.
def build_distance_matrix(response): distance_matrix = [] for row in response['rows']: row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))] distance_matrix.append(row_list) return distance_matrix
خط
row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))]
فواصل بین مکان ها را برای یک ردیف از پاسخ استخراج می کند. می توانید این را با بخشی از پاسخ (تبدیل شده توسط json.loads
) برای یک مبدا و مقصد، که در زیر نشان داده شده است، مقایسه کنید.
{u'status': u'OK', u'rows': [{u'elements': [{u'duration': {u'text': u'21 mins', u'value': 1264}, u'distance': {u'text': u'15.2 mi', u'value': 24392}, u'status': u'OK'}]}], u'origin_addresses': [u'3610 Hacks Cross Rd, Memphis, TN 38125, USA'], u'destination_addresses': [u'1921 Elvis Presley Blvd, Memphis, TN 38106, USA']}
اگر میخواهید یک ماتریس زمانی ایجاد کنید که حاوی زمانهای سفر بین مکانها باشد، در تابع build_distance_matrix
، 'distance'
با 'duration'
جایگزین کنید.
برنامه را اجرا کنید
کد زیر در تابع main برنامه را اجرا می کند
def main(): """Entry point of the program""" # Create the data. data = create_data() addresses = data['addresses'] API_key = data['API_key'] distance_matrix = create_distance_matrix(data) print(distance_matrix)
هنگامی که برنامه را اجرا می کنید، ماتریس فاصله را مانند تصویر زیر چاپ می کند.
[[0, 24392, 33384, 14963, 31992, 32054, 20866, 28427, 15278, 21439, 28765, 34618, 35177, 10612, 26762, 27278], [25244, 0, 8314, 10784, 6922, 6984, 10678, 3270, 10707, 7873, 11350, 9548, 10107, 19176, 12139, 13609], [34062, 8491, 0, 14086, 4086, 1363, 11008, 4239, 13802, 9627, 7179, 1744, 925, 27994, 9730, 10531], [15494, 13289, 13938, 0, 11065, 12608, 4046, 10970, 581, 5226, 10788, 15500, 16059, 5797, 9180, 9450], [33351, 7780, 4096, 11348, 0, 2765, 7364, 4464, 11064, 6736, 3619, 4927, 5485, 20823, 6170, 7076], [32731, 7160, 1363, 12755, 2755, 0, 9677, 3703, 12471, 8297, 7265, 2279, 2096, 26664, 9816, 9554], [19636, 10678, 11017, 4038, 7398, 9687, 0, 9159, 3754, 2809, 7099, 10740, 11253, 8970, 5491, 5928], [29097, 3270, 4257, 11458, 4350, 3711, 9159, 0, 11174, 6354, 10160, 5178, 5258, 23029, 10620, 12419], [15809, 10707, 13654, 581, 10781, 12324, 3763, 10687, 0, 4943, 10504, 15216, 15775, 5216, 8896, 9166], [21831, 7873, 9406, 5226, 6282, 8075, 2809, 6354, 4943, 0, 6967, 10968, 11526, 10159, 5119, 6383], [28822, 11931, 6831, 11802, 3305, 6043, 7167, 10627, 11518, 7159, 0, 5361, 6422, 18351, 3267, 4068], [35116, 9545, 1771, 15206, 4648, 2518, 10967, 5382, 14922, 10747, 5909, 0, 1342, 29094, 8460, 9260], [36058, 10487, 927, 16148, 5590, 2211, 11420, 9183, 15864, 11689, 6734, 1392, 0, 30036, 9285, 10086], [11388, 19845, 28838, 5797, 20972, 27507, 8979, 23880, 5216, 10159, 18622, 29331, 29890, 0, 16618, 17135], [27151, 11444, 9719, 10131, 6193, 8945, 5913, 10421, 9847, 5374, 3335, 8249, 9309, 16680, 0, 1264], [27191, 14469, 10310, 9394, 7093, 9772, 5879, 13164, 9110, 6422, 3933, 8840, 9901, 16720, 1288, 0]]
ماتریس زمان سفر
همانطور که در بالا ذکر شد، اگر می خواهید یک ماتریس از زمان سفر بین مکان ها ایجاد کنید (به جای مسافت)، به سادگی در تابع build_distance_matrix
'distance'
با 'duration'
جایگزین کنید. وقتی برنامه را با آن تغییر اجرا می کنید، ماتریس زمان سفر زیر را نمایش می دهد:
[[0, 1232, 1599, 964, 1488, 1441, 1291, 1323, 978, 1228, 1493, 1617, 1570, 765, 1272, 1359], [1333, 0, 653, 922, 542, 495, 864, 297, 917, 622, 783, 671, 624, 1059, 985, 904], [1669, 643, 0, 1291, 447, 161, 1021, 461, 1258, 862, 715, 419, 198, 1395, 855, 904], [1062, 862, 1262, 0, 946, 1104, 360, 926, 61, 482, 995, 1237, 1190, 589, 761, 839], [1626, 600, 475, 1008, 0, 317, 688, 505, 976, 630, 446, 475, 428, 1271, 587, 648], [1537, 511, 166, 1158, 314, 0, 889, 402, 1125, 730, 697, 430, 313, 1262, 837, 770], [1388, 891, 1022, 374, 668, 863, 0, 731, 341, 259, 731, 1110, 1091, 869, 496, 570], [1407, 303, 489, 934, 492, 410, 725, 0, 901, 482, 692, 580, 587, 1132, 845, 814], [1060, 914, 1215, 55, 899, 1057, 314, 880, 0, 435, 949, 1190, 1144, 528, 714, 792], [1314, 651, 855, 475, 605, 696, 260, 491, 443, 0, 700, 830, 783, 970, 489, 596], [1530, 801, 697, 990, 427, 625, 709, 721, 957, 663, 0, 542, 634, 1084, 338, 387], [1704, 678, 370, 1355, 508, 430, 1074, 598, 1322, 866, 564, 0, 297, 1405, 703, 752], [1612, 586, 215, 1201, 416, 359, 1070, 506, 1169, 773, 639, 313, 0, 1312, 778, 827], [861, 1074, 1441, 610, 1337, 1282, 869, 1164, 555, 990, 1157, 1433, 1386, 0, 936, 1022], [1375, 1045, 899, 795, 629, 825, 588, 901, 762, 549, 408, 744, 836, 929, 0, 107], [1428, 947, 957, 885, 692, 750, 599, 867, 852, 637, 362, 803, 894, 982, 111, 0]]
استفاده از ماتریس فاصله در یک برنامه VRP
برای مشاهده نحوه استفاده از ماتریس فاصله نشان داده شده در بالا در یک برنامه VRP، ماتریس فاصله در مثال قبلی VRP را با مثال بالا جایگزین کنید. همچنین مقدار پارامتر maximum_distance
در بعد فاصله را به 70000
تغییر دهید. هنگامی که برنامه اصلاح شده را اجرا می کنید، خروجی زیر را برمی گرداند.
Route for vehicle 0: 0 -> 1 -> 7 -> 5 -> 4 -> 8 -> 0 Distance of route: 61001m Route for vehicle 1: 0 -> 0 Distance of route: 0m Route for vehicle 2: 0 -> 3 -> 2 -> 12 -> 11 -> 6 -> 0 Distance of route: 61821m Route for vehicle 3: 0 -> 13 -> 9 -> 10 -> 14 -> 15 -> 0 Distance of route: 59460m Total distance of all routes: 182282m
کل برنامه
کل برنامه در زیر نشان داده شده است.
import requests import json import urllib def create_data(): """Creates the data.""" data = {} data['API_key'] = 'YOUR_API_KEY' data['addresses'] = ['3610+Hacks+Cross+Rd+Memphis+TN', # depot '1921+Elvis+Presley+Blvd+Memphis+TN', '149+Union+Avenue+Memphis+TN', '1034+Audubon+Drive+Memphis+TN', '1532+Madison+Ave+Memphis+TN', '706+Union+Ave+Memphis+TN', '3641+Central+Ave+Memphis+TN', '926+E+McLemore+Ave+Memphis+TN', '4339+Park+Ave+Memphis+TN', '600+Goodwyn+St+Memphis+TN', '2000+North+Pkwy+Memphis+TN', '262+Danny+Thomas+Pl+Memphis+TN', '125+N+Front+St+Memphis+TN', '5959+Park+Ave+Memphis+TN', '814+Scott+St+Memphis+TN', '1005+Tillman+St+Memphis+TN' ] return data def create_distance_matrix(data): addresses = data["addresses"] API_key = data["API_key"] # Distance Matrix API only accepts 100 elements per request, so get rows in multiple requests. max_elements = 100 num_addresses = len(addresses) # 16 in this example. # Maximum number of rows that can be computed per request (6 in this example). max_rows = max_elements // num_addresses # num_addresses = q * max_rows + r (q = 2 and r = 4 in this example). q, r = divmod(num_addresses, max_rows) dest_addresses = addresses distance_matrix = [] # Send q requests, returning max_rows rows per request. for i in range(q): origin_addresses = addresses[i * max_rows: (i + 1) * max_rows] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) # Get the remaining remaining r rows, if necessary. if r > 0: origin_addresses = addresses[q * max_rows: q * max_rows + r] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) return distance_matrix def send_request(origin_addresses, dest_addresses, API_key): """ Build and send request for the given origin and destination addresses.""" def build_address_str(addresses): # Build a pipe-separated string of addresses address_str = '' for i in range(len(addresses) - 1): address_str += addresses[i] + '|' address_str += addresses[-1] return address_str request = 'https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial' origin_address_str = build_address_str(origin_addresses) dest_address_str = build_address_str(dest_addresses) request = request + '&origins=' + origin_address_str + '&destinations=' + \ dest_address_str + '&key=' + API_key jsonResult = urllib.urlopen(request).read() response = json.loads(jsonResult) return response def build_distance_matrix(response): distance_matrix = [] for row in response['rows']: row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))] distance_matrix.append(row_list) return distance_matrix ######## # Main # ######## def main(): """Entry point of the program""" # Create the data. data = create_data() addresses = data['addresses'] API_key = data['API_key'] distance_matrix = create_distance_matrix(data) print(distance_matrix) if __name__ == '__main__': main()