Phần này đưa ra một ví dụ cho thấy cách giải một bài tập bằng cách dùng cả trình giải MIP và trình giải CP-SAT.
Ví dụ:
Trong ví dụ này có 5 worker (được đánh số từ 0 đến 4) và bốn công việc (được đánh số) 0 – 3). Lưu ý rằng có một worker nhiều hơn ví dụ trong ví dụ Tổng quan.
Chi phí phân công nhân viên vào các nhiệm vụ được thể hiện trong bảng sau.
Worker | Nhiệm vụ 0 | Nhiệm vụ 1 | Nhiệm vụ 2 | Nhiệm vụ 3 |
---|---|---|---|---|
0 | 90 | 80 | 75 | 70 |
1 | 35 | 85 | 55 | 65 |
2 | 125 | 95 | 90 | 95 |
3 | 45 | 110 | 95 | 115 |
4 | 50 | 100 | 90 | 100 |
Vấn đề là chỉ định mỗi nhân viên cho tối đa một công việc, không có hai nhân viên nào đang hoạt động cùng một công việc, vừa giảm thiểu tổng chi phí. Vì có nhiều nhân viên hơn công việc, thì một worker sẽ không được giao một công việc.
Giải pháp MIP
Các phần sau đây mô tả cách giải bài tập bằng cách sử dụng Trình bao bọc MPSolver.
Nhập thư viện
Mã sau đây nhập các thư viện bắt buộc.
Python
from ortools.linear_solver import pywraplp
C++
#include <memory> #include <vector> #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable;
C#
using System; using Google.OrTools.LinearSolver;
Tạo dữ liệu
Mã sau đây sẽ tạo dữ liệu cho bài toán này.
Python
costs = [ [90, 80, 75, 70], [35, 85, 55, 65], [125, 95, 90, 95], [45, 110, 95, 115], [50, 100, 90, 100], ] num_workers = len(costs) num_tasks = len(costs[0])
C++
const std::vector<std::vector<double>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = costs.size(); const int num_tasks = costs[0].size();
Java
double[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; int numWorkers = costs.length; int numTasks = costs[0].length;
C#
int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1);
Mảng costs
tương ứng với bảng chi phí
để phân công nhân viên vào nhiệm vụ, như đã trình bày ở trên.
Khai báo trình giải mã MIP
Mã sau đây khai báo trình giải MIP.
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
Tạo biến
Mã sau đây tạo các biến số nguyên nhị phân cho bài toán này.
Python
# x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for i in range(num_workers): for j in range(num_tasks): x[i, j] = solver.IntVar(0, 1, "")
C++
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = solver->MakeIntVar(0, 1, ""); } }
Java
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } }
C#
// x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}"); } }
Tạo các quy tắc ràng buộc
Mã sau đây tạo ra các điều kiện ràng buộc cho bài toán này.
Python
# Each worker is assigned to at most 1 task. for i in range(num_workers): solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1) # Each task is assigned to exactly one worker. for j in range(num_tasks): solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)
C++
// Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { LinearExpr worker_sum; for (int j = 0; j < num_tasks; ++j) { worker_sum += x[i][j]; } solver->MakeRowConstraint(worker_sum <= 1.0); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { LinearExpr task_sum; for (int i = 0; i < num_workers; ++i) { task_sum += x[i][j]; } solver->MakeRowConstraint(task_sum == 1.0); }
Java
// Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { MPConstraint constraint = solver.makeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.setCoefficient(x[i][j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.setCoefficient(x[i][j], 1); } }
C#
// Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { Constraint constraint = solver.MakeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.SetCoefficient(x[i, j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.SetCoefficient(x[i, j], 1); } }
Tạo hàm mục tiêu
Mã sau đây sẽ tạo hàm mục tiêu cho bài toán này.
Python
objective_terms = [] for i in range(num_workers): for j in range(num_tasks): objective_terms.append(costs[i][j] * x[i, j]) solver.Minimize(solver.Sum(objective_terms))
C++
MPObjective* const objective = solver->MutableObjective(); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { objective->SetCoefficient(x[i][j], costs[i][j]); } } objective->SetMinimization();
Java
MPObjective objective = solver.objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.setCoefficient(x[i][j], costs[i][j]); } } objective.setMinimization();
C#
Objective objective = solver.Objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.SetCoefficient(x[i, j], costs[i, j]); } } objective.SetMinimization();
Giá trị của hàm mục tiêu là tổng chi phí trên tất cả các biến được chỉ định giá trị 1 theo trình giải.
Gọi trình giải
Mã sau đây gọi trình giải.
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve();
Java
MPSolver.ResultStatus resultStatus = solver.solve();
C#
Solver.ResultStatus resultStatus = solver.Solve();
In giải pháp
Mã sau đây in giải pháp cho sự cố.
Python
if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for i in range(num_workers): for j in range(num_tasks): # Test if x[i,j] is 1 (with tolerance for floating point arithmetic). if x[i, j].solution_value() > 0.5: print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}") else: print("No solution found.")
C++
// Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j]->solution_value() > 0.5) { LOG(INFO) << "Worker " << i << " assigned to task " << j << ". Cost = " << costs[i][j]; } } }
Java
// Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j].solutionValue() > 0.5) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost = " + costs[i][j]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i, j].SolutionValue() > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); }
Đây là kết quả của chương trình.
Total cost = 265.0 Worker 0 assigned to task 3. Cost = 70 Worker 1 assigned to task 2. Cost = 55 Worker 2 assigned to task 1. Cost = 95 Worker 3 assigned to task 0. Cost = 45
Hoàn tất chương trình
Sau đây là các chương trình hoàn chỉnh cho giải pháp MIP.
Python
from ortools.linear_solver import pywraplp def main(): # Data costs = [ [90, 80, 75, 70], [35, 85, 55, 65], [125, 95, 90, 95], [45, 110, 95, 115], [50, 100, 90, 100], ] num_workers = len(costs) num_tasks = len(costs[0]) # Solver # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return # Variables # x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for i in range(num_workers): for j in range(num_tasks): x[i, j] = solver.IntVar(0, 1, "") # Constraints # Each worker is assigned to at most 1 task. for i in range(num_workers): solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1) # Each task is assigned to exactly one worker. for j in range(num_tasks): solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1) # Objective objective_terms = [] for i in range(num_workers): for j in range(num_tasks): objective_terms.append(costs[i][j] * x[i, j]) solver.Minimize(solver.Sum(objective_terms)) # Solve print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() # Print solution. if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for i in range(num_workers): for j in range(num_tasks): # Test if x[i,j] is 1 (with tolerance for floating point arithmetic). if x[i, j].solution_value() > 0.5: print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}") else: print("No solution found.") if __name__ == "__main__": main()
C++
#include <memory> #include <vector> #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void AssignmentMip() { // Data const std::vector<std::vector<double>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = costs.size(); const int num_tasks = costs[0].size(); // Solver // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = solver->MakeIntVar(0, 1, ""); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { LinearExpr worker_sum; for (int j = 0; j < num_tasks; ++j) { worker_sum += x[i][j]; } solver->MakeRowConstraint(worker_sum <= 1.0); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { LinearExpr task_sum; for (int i = 0; i < num_workers; ++i) { task_sum += x[i][j]; } solver->MakeRowConstraint(task_sum == 1.0); } // Objective. MPObjective* const objective = solver->MutableObjective(); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { objective->SetCoefficient(x[i][j], costs[i][j]); } } objective->SetMinimization(); // Solve const MPSolver::ResultStatus result_status = solver->Solve(); // Print solution. // Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j]->solution_value() > 0.5) { LOG(INFO) << "Worker " << i << " assigned to task " << j << ". Cost = " << costs[i][j]; } } } } } // namespace operations_research int main(int argc, char** argv) { operations_research::AssignmentMip(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; /** MIP example that solves an assignment problem. */ public class AssignmentMip { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data double[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; int numWorkers = costs.length; int numTasks = costs[0].length; // Solver // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { MPConstraint constraint = solver.makeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.setCoefficient(x[i][j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.setCoefficient(x[i][j], 1); } } // Objective MPObjective objective = solver.objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.setCoefficient(x[i][j], costs[i][j]); } } objective.setMinimization(); // Solve MPSolver.ResultStatus resultStatus = solver.solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j].solutionValue() > 0.5) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost = " + costs[i][j]); } } } } else { System.err.println("No solution found."); } } private AssignmentMip() {} }
C#
using System; using Google.OrTools.LinearSolver; public class AssignmentMip { static void Main() { // Data. int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); // Solver. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } // Variables. // x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}"); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { Constraint constraint = solver.MakeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.SetCoefficient(x[i, j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.SetCoefficient(x[i, j], 1); } } // Objective Objective objective = solver.Objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.SetCoefficient(x[i, j], costs[i, j]); } } objective.SetMinimization(); // Solve Solver.ResultStatus resultStatus = solver.Solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i, j].SolutionValue() > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); } } }
Giải pháp CP SAT
Các phần sau đây mô tả cách dùng trình giải quyết CP-SAT để giải bài tập này.
Nhập thư viện
Mã sau đây nhập các thư viện bắt buộc.
Python
import io import pandas as pd from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <vector> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using Google.OrTools.Sat;
Khai báo mô hình
Mã sau đây khai báo mô hình CP-SAT.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Tạo dữ liệu
Mã sau đây thiết lập dữ liệu cho sự cố này.
Python
data_str = """ worker task cost w1 t1 90 w1 t2 80 w1 t3 75 w1 t4 70 w2 t1 35 w2 t2 85 w2 t3 55 w2 t4 65 w3 t1 125 w3 t2 95 w3 t3 90 w3 t4 95 w4 t1 45 w4 t2 110 w4 t3 95 w4 t4 115 w5 t1 50 w5 t2 110 w5 t3 90 w5 t4 100 """ data = pd.read_table(io.StringIO(data_str), sep=r"\s+")
C++
const std::vector<std::vector<int>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = static_cast<int>(costs.size()); const int num_tasks = static_cast<int>(costs[0].size());
Java
int[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray();
C#
int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1);
Mảng costs
tương ứng với bảng chi phí
để phân công nhân viên vào nhiệm vụ, như đã trình bày ở trên.
Tạo biến
Mã sau đây tạo các biến số nguyên nhị phân cho bài toán này.
Python
x = model.new_bool_var_series(name="x", index=data.index)
C++
// x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = cp_model.NewBoolVar(); } }
Java
Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } }
C#
BoolVar[,] x = new BoolVar[numWorkers, numTasks]; // Variables in a 1-dim array. for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}"); } }
Tạo các quy tắc ràng buộc
Mã sau đây tạo ra các điều kiện ràng buộc cho bài toán này.
Python
# Each worker is assigned to at most one task. for unused_name, tasks in data.groupby("worker"): model.add_at_most_one(x[tasks.index]) # Each task is assigned to exactly one worker. for unused_name, workers in data.groupby("task"): model.add_exactly_one(x[workers.index])
C++
// Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { cp_model.AddAtMostOne(x[i]); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { std::vector<BoolVar> tasks; for (int i = 0; i < num_workers; ++i) { tasks.push_back(x[i][j]); } cp_model.AddExactlyOne(tasks); }
Java
// Each worker is assigned to at most one task. for (int worker : allWorkers) { List<Literal> tasks = new ArrayList<>(); for (int task : allTasks) { tasks.add(x[worker][task]); } model.addAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); }
C#
// Each worker is assigned to at most one task. for (int worker = 0; worker < numWorkers; ++worker) { List<ILiteral> tasks = new List<ILiteral>(); for (int task = 0; task < numTasks; ++task) { tasks.Add(x[worker, task]); } model.AddAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task = 0; task < numTasks; ++task) { List<ILiteral> workers = new List<ILiteral>(); for (int worker = 0; worker < numWorkers; ++worker) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); }
Tạo hàm mục tiêu
Mã sau đây sẽ tạo hàm mục tiêu cho bài toán này.
Python
model.minimize(data.cost.dot(x))
C++
LinearExpr total_cost; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { total_cost += x[i][j] * costs[i][j]; } } cp_model.Minimize(total_cost);
Java
LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj);
C#
LinearExprBuilder obj = LinearExpr.NewBuilder(); for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { obj.AddTerm((IntVar)x[worker, task], costs[worker, task]); } } model.Minimize(obj);
Giá trị của hàm mục tiêu là tổng chi phí trên tất cả các biến được chỉ định giá trị 1 theo trình giải.
Gọi trình giải
Mã sau đây gọi trình giải.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
In giải pháp
Mã sau đây in giải pháp cho sự cố.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index] for unused_index, row in selected.iterrows(): print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}") elif status == cp_model.INFEASIBLE: print("No solution found") else: print("Something is wrong, check the status and the log of the solve")
C++
if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { if (SolutionBooleanValue(response, x[i][j])) { LOG(INFO) << "Task " << i << " assigned to worker " << j << ". Cost: " << costs[i][j]; } } }
Java
// Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.booleanValue(x[i][j])) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost: " + costs[i][j]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.Value(x[i, j]) > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); }
Đây là kết quả của chương trình.
Total cost = 265 Worker 0 assigned to task 3 Cost = 70 Worker 1 assigned to task 2 Cost = 55 Worker 2 assigned to task 1 Cost = 95 Worker 3 assigned to task 0 Cost = 45
Hoàn tất chương trình
Dưới đây là các chương trình hoàn chỉnh cho giải pháp CP-SAT.
Python
import io import pandas as pd from ortools.sat.python import cp_model def main() -> None: # Data data_str = """ worker task cost w1 t1 90 w1 t2 80 w1 t3 75 w1 t4 70 w2 t1 35 w2 t2 85 w2 t3 55 w2 t4 65 w3 t1 125 w3 t2 95 w3 t3 90 w3 t4 95 w4 t1 45 w4 t2 110 w4 t3 95 w4 t4 115 w5 t1 50 w5 t2 110 w5 t3 90 w5 t4 100 """ data = pd.read_table(io.StringIO(data_str), sep=r"\s+") # Model model = cp_model.CpModel() # Variables x = model.new_bool_var_series(name="x", index=data.index) # Constraints # Each worker is assigned to at most one task. for unused_name, tasks in data.groupby("worker"): model.add_at_most_one(x[tasks.index]) # Each task is assigned to exactly one worker. for unused_name, workers in data.groupby("task"): model.add_exactly_one(x[workers.index]) # Objective model.minimize(data.cost.dot(x)) # Solve solver = cp_model.CpSolver() status = solver.solve(model) # Print solution. if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index] for unused_index, row in selected.iterrows(): print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}") elif status == cp_model.INFEASIBLE: print("No solution found") else: print("Something is wrong, check the status and the log of the solve") if __name__ == "__main__": main()
C++
#include <stdlib.h> #include <vector> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void IntegerProgrammingExample() { // Data const std::vector<std::vector<int>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = static_cast<int>(costs.size()); const int num_tasks = static_cast<int>(costs[0].size()); // Model CpModelBuilder cp_model; // Variables // x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = cp_model.NewBoolVar(); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { cp_model.AddAtMostOne(x[i]); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { std::vector<BoolVar> tasks; for (int i = 0; i < num_workers; ++i) { tasks.push_back(x[i][j]); } cp_model.AddExactlyOne(tasks); } // Objective LinearExpr total_cost; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { total_cost += x[i][j] * costs[i][j]; } } cp_model.Minimize(total_cost); // Solve const CpSolverResponse response = Solve(cp_model.Build()); // Print solution. if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { if (SolutionBooleanValue(response, x[i][j])) { LOG(INFO) << "Task " << i << " assigned to worker " << j << ". Cost: " << costs[i][j]; } } } } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::IntegerProgrammingExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Assignment problem. */ public class AssignmentSat { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data int[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); // Model CpModel model = new CpModel(); // Variables Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } } // Constraints // Each worker is assigned to at most one task. for (int worker : allWorkers) { List<Literal> tasks = new ArrayList<>(); for (int task : allTasks) { tasks.add(x[worker][task]); } model.addAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.booleanValue(x[i][j])) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost: " + costs[i][j]); } } } } else { System.err.println("No solution found."); } } private AssignmentSat() {} }
C#
using System; using System.Collections.Generic; using Google.OrTools.Sat; public class AssignmentSat { public static void Main(String[] args) { // Data. int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); // Model. CpModel model = new CpModel(); // Variables. BoolVar[,] x = new BoolVar[numWorkers, numTasks]; // Variables in a 1-dim array. for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}"); } } // Constraints // Each worker is assigned to at most one task. for (int worker = 0; worker < numWorkers; ++worker) { List<ILiteral> tasks = new List<ILiteral>(); for (int task = 0; task < numTasks; ++task) { tasks.Add(x[worker, task]); } model.AddAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task = 0; task < numTasks; ++task) { List<ILiteral> workers = new List<ILiteral>(); for (int worker = 0; worker < numWorkers; ++worker) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.NewBuilder(); for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { obj.AddTerm((IntVar)x[worker, task], costs[worker, task]); } } model.Minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.Value(x[i, j]) > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" - conflicts : {solver.NumConflicts()}"); Console.WriteLine($" - branches : {solver.NumBranches()}"); Console.WriteLine($" - wall time : {solver.WallTime()}s"); } }