Chỉ định dưới dạng vấn đề về luồng chi phí tối thiểu

Bạn có thể dùng trình giải quyết luồng chi phí tối thiểu để giải quyết các trường hợp đặc biệt của bài tập.

Trên thực tế, quy trình chi phí tối thiểu thường có thể trả về một giải pháp nhanh hơn so với MIP hoặc Trình giải quyết CP-SAT. Tuy nhiên, MIP và CP-SAT có thể giải quyết nhiều vấn đề hơn so với quy trình chi phí tối thiểu, vì vậy, trong hầu hết các trường hợp, MIP hoặc CP-SAT là lựa chọn tốt nhất.

Các phần sau đây trình bày những chương trình Python giải quyết những vấn đề sau bài tập bằng công cụ giải toán luồng chi phí tối thiểu:

Ví dụ về chỉ định tuyến tính

Phần này trình bày cách giải ví dụ, được mô tả trong phần Trình giải bài tập tuyến tính, dưới dạng một phút luồng chi phí.

Nhập thư viện

Mã sau đây nhập thư viện bắt buộc.

Python

from ortools.graph.python import min_cost_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

C#

using System;
using Google.OrTools.Graph;

Khai báo trình giải

Mã sau đây tạo trình giải quyết luồng chi phí tối thiểu.

Python

# Instantiate a SimpleMinCostFlow solver.
smcf = min_cost_flow.SimpleMinCostFlow()

C++

// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;

Java

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

C#

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

Tạo dữ liệu

Sơ đồ luồng cho bài toán bao gồm đồ thị hai phần về chi phí ma trận (xem tổng quan về bài tập để cung cấp một chút ví dụ khác), kèm theo nguồn và bồn lưu trữ dữ liệu.

biểu đồ luồng chi phí mạng

Dữ liệu này chứa bốn mảng sau, tương ứng với các nút bắt đầu, nút cuối, dung lượng và chi phí cho sự cố. Độ dài của mỗi mảng là số lượng cung trong biểu đồ.

Python

# Define the directed graph for the flow.
start_nodes = (
    [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8]
)
end_nodes = (
    [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9]
)
capacities = (
    [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1]
)
costs = (
    [0, 0, 0, 0]
    + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115]
    + [0, 0, 0, 0]
)

source = 0
sink = 9
tasks = 4
supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

C++

// Define four parallel arrays: sources, destinations, capacities,
// and unit costs between each pair. For instance, the arc from node 0
// to node 1 has a capacity of 15.
const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
                                          3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
                                        5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const std::vector<int64_t> unit_costs = {0,  0,   0,  0,   90,  76, 75, 70,
                                         35, 85,  55, 65,  125, 95, 90, 105,
                                         45, 110, 95, 115, 0,   0,  0,  0};

const int64_t source = 0;
const int64_t sink = 9;
const int64_t tasks = 4;
// Define an array of supplies at each node.
const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

Java

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes =
    new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
int[] endNodes =
    new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
int[] capacities =
    new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
int[] unitCosts = new int[] {
    0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0};

int source = 0;
int sink = 9;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

C#

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 };
int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 };
int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int[] unitCosts = { 0,   0,  0,  0,   90, 76,  75, 70,  35, 85, 55, 65,
                    125, 95, 90, 105, 45, 110, 95, 115, 0,  0,  0,  0 };

int source = 0;
int sink = 9;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

Để làm rõ cách dữ liệu được thiết lập, mỗi mảng được chia thành ba mảng con:

  • Mảng đầu tiên tương ứng với các cung tròn dẫn ra khỏi nguồn.
  • Mảng thứ hai tương ứng với các cung giữa worker và công việc. Đối với costs, đây chỉ là ma trận chi phí (do trình giải bài tập tuyến tính sử dụng), được làm phẳng thành một vectơ.
  • Mảng thứ ba tương ứng với các vòng cung dẫn vào bồn rửa.

Dữ liệu này cũng bao gồm vectơ supplies, sẽ cung cấp nguồn cung cấp ở mỗi nút.

Cách bài toán luồng chi phí tối thiểu biểu thị một bài tập chỉ định

Vấn đề luồng chi phí tối thiểu ở trên thể hiện vấn đề chỉ định như thế nào? Đầu tiên, vì dung lượng của mỗi cung là 1, nên nguồn cung 4 tại các nguồn lực trong 4 vòng cung dẫn vào worker có luồng 1.

Tiếp theo, điều kiện luồng vào bằng với luồng ra buộc luồng ra khỏi mỗi worker là 1. Nếu có thể, trình giải quyết sẽ hướng quy trình đó theo mức chi phí tối thiểu vòng cung dẫn ra khỏi mỗi worker. Tuy nhiên, trình giải quyết không thể chuyển hướng luồng từ hai trình thực thi khác nhau thành một tác vụ duy nhất. Nếu có, sẽ có sự kết hợp luồng 2 ở nhiệm vụ đó. Luồng này không thể được gửi qua vòng cung duy nhất với dung tích 1 từ nhiệm vụ đến bồn rửa. Điều này có nghĩa là trình giải quyết chỉ có thể giao một nhiệm vụ cho một worker, vì mà bài tập yêu cầu.

Cuối cùng, điều kiện dòng vào bằng nhau buộc mỗi tác vụ phải có một 1, vì vậy, mỗi tác vụ sẽ được thực hiện bởi một số worker.

Tạo biểu đồ và các điều kiện ràng buộc

Mã sau đây sẽ tạo biểu đồ và các điều kiện ràng buộc.

Python

# Add each arc.
for i in range(len(start_nodes)):
    smcf.add_arc_with_capacity_and_unit_cost(
        start_nodes[i], end_nodes[i], capacities[i], costs[i]
    )
# Add node supplies.
for i in range(len(supplies)):
    smcf.set_node_supply(i, supplies[i])

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
      start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
  if (arc != i) LOG(FATAL) << "Internal error";
}

// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
  min_cost_flow.SetNodeSupply(i, supplies[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = minCostFlow.addArcWithCapacityAndUnitCost(
      startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
  minCostFlow.setNodeSupply(i, supplies[i]);
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc =
        minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
    minCostFlow.SetNodeSupply(i, supplies[i]);
}

Gọi trình giải

Mã sau đây gọi trình giải và hiển thị đáp án.

Python

# Find the minimum cost flow between node 0 and node 10.
status = smcf.solve()

C++

// Find the min cost flow.
int status = min_cost_flow.Solve();

Java

// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();

C#

// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();

Giải pháp này bao gồm các vòng cung giữa worker và công việc được chỉ định luồng 1 của trình giải. (Các vòng cung được kết nối với nguồn hoặc bồn lưu trữ dữ liệu không thuộc giải pháp.)

Chương trình sẽ kiểm tra từng vòng cung để xem liệu nó có luồng 1 hay không và nếu có, in Tail (nút bắt đầu) và Head (nút kết thúc) của vòng cung, tương ứng với một worker và công việc trong bài tập.

Kết quả của chương trình

Python

if status == smcf.OPTIMAL:
    print("Total cost = ", smcf.optimal_cost())
    print()
    for arc in range(smcf.num_arcs()):
        # Can ignore arcs leading out of source or into sink.
        if smcf.tail(arc) != source and smcf.head(arc) != sink:

            # Arcs in the solution have a flow value of 1. Their start and end nodes
            # give an assignment of worker to task.
            if smcf.flow(arc) > 0:
                print(
                    "Worker %d assigned to task %d.  Cost = %d"
                    % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                )
else:
    print("There was an issue with the min cost flow input.")
    print(f"Status: {status}")

C++

if (status == MinCostFlow::OPTIMAL) {
  LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
  LOG(INFO) << "";
  for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
    // Can ignore arcs leading out of source or into sink.
    if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end
      // nodes give an assignment of worker to task.
      if (min_cost_flow.Flow(i) > 0) {
        LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                  << " assigned to task " << min_cost_flow.Head(i)
                  << " Cost: " << min_cost_flow.UnitCost(i);
      }
    }
  }
} else {
  LOG(INFO) << "Solving the min cost flow problem failed.";
  LOG(INFO) << "Solver status: " << status;
}

Java

if (status == MinCostFlow.Status.OPTIMAL) {
  System.out.println("Total cost: " + minCostFlow.getOptimalCost());
  System.out.println();
  for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
    // Can ignore arcs leading out of source or into sink.
    if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end nodes
      // give an assignment of worker to task.
      if (minCostFlow.getFlow(i) > 0) {
        System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
            + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
      }
    }
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == MinCostFlow.Status.OPTIMAL)
{
    Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
    Console.WriteLine("");
    for (int i = 0; i < minCostFlow.NumArcs(); ++i)
    {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink)
        {
            // Arcs in the solution have a flow value of 1. Their start and end nodes
            // give an assignment of worker to task.
            if (minCostFlow.Flow(i) > 0)
            {
                Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                  " Cost: " + minCostFlow.UnitCost(i));
            }
        }
    }
}
else
{
    Console.WriteLine("Solving the min cost flow problem failed.");
    Console.WriteLine("Solver status: " + status);
}

Đây là kết quả của chương trình.

Total cost = 265

Worker 1 assigned to task 8.  Cost = 70
Worker 2 assigned to task 7.  Cost = 55
Worker 3 assigned to task 6.  Cost = 95
Worker 4 assigned to task 5.  Cost = 45

Time = 0.000245 seconds

Kết quả giống với kết quả cho trình giải bài tập tuyến tính (ngoại trừ số lượng nhân viên và chi phí). Trình giải bài tập tuyến tính nhanh hơn một chút so với luồng chi phí tối thiểu – 0,000147 giây so với 0,000458 giây.

Toàn bộ chương trình

Toàn bộ chương trình được hiển thị dưới đây.

Python

"""Linear assignment example."""
from ortools.graph.python import min_cost_flow


def main():
    """Solving an Assignment Problem with MinCostFlow."""
    # Instantiate a SimpleMinCostFlow solver.
    smcf = min_cost_flow.SimpleMinCostFlow()

    # Define the directed graph for the flow.
    start_nodes = (
        [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8]
    )
    end_nodes = (
        [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9]
    )
    capacities = (
        [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1]
    )
    costs = (
        [0, 0, 0, 0]
        + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115]
        + [0, 0, 0, 0]
    )

    source = 0
    sink = 9
    tasks = 4
    supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

    # Add each arc.
    for i in range(len(start_nodes)):
        smcf.add_arc_with_capacity_and_unit_cost(
            start_nodes[i], end_nodes[i], capacities[i], costs[i]
        )
    # Add node supplies.
    for i in range(len(supplies)):
        smcf.set_node_supply(i, supplies[i])

    # Find the minimum cost flow between node 0 and node 10.
    status = smcf.solve()

    if status == smcf.OPTIMAL:
        print("Total cost = ", smcf.optimal_cost())
        print()
        for arc in range(smcf.num_arcs()):
            # Can ignore arcs leading out of source or into sink.
            if smcf.tail(arc) != source and smcf.head(arc) != sink:

                # Arcs in the solution have a flow value of 1. Their start and end nodes
                # give an assignment of worker to task.
                if smcf.flow(arc) > 0:
                    print(
                        "Worker %d assigned to task %d.  Cost = %d"
                        % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                    )
    else:
        print("There was an issue with the min cost flow input.")
        print(f"Status: {status}")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

namespace operations_research {
// MinCostFlow simple interface example.
void AssignmentMinFlow() {
  // Instantiate a SimpleMinCostFlow solver.
  SimpleMinCostFlow min_cost_flow;

  // Define four parallel arrays: sources, destinations, capacities,
  // and unit costs between each pair. For instance, the arc from node 0
  // to node 1 has a capacity of 15.
  const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
                                            3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
  const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
                                          5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
  const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  const std::vector<int64_t> unit_costs = {0,  0,   0,  0,   90,  76, 75, 70,
                                           35, 85,  55, 65,  125, 95, 90, 105,
                                           45, 110, 95, 115, 0,   0,  0,  0};

  const int64_t source = 0;
  const int64_t sink = 9;
  const int64_t tasks = 4;
  // Define an array of supplies at each node.
  const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
        start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
    if (arc != i) LOG(FATAL) << "Internal error";
  }

  // Add node supplies.
  for (int i = 0; i < supplies.size(); ++i) {
    min_cost_flow.SetNodeSupply(i, supplies[i]);
  }

  // Find the min cost flow.
  int status = min_cost_flow.Solve();

  if (status == MinCostFlow::OPTIMAL) {
    LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
    LOG(INFO) << "";
    for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
      // Can ignore arcs leading out of source or into sink.
      if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) {
        // Arcs in the solution have a flow value of 1. Their start and end
        // nodes give an assignment of worker to task.
        if (min_cost_flow.Flow(i) > 0) {
          LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                    << " assigned to task " << min_cost_flow.Head(i)
                    << " Cost: " << min_cost_flow.UnitCost(i);
        }
      }
    }
  } else {
    LOG(INFO) << "Solving the min cost flow problem failed.";
    LOG(INFO) << "Solver status: " << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::AssignmentMinFlow();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

/** Minimal Assignment Min Flow. */
public class AssignmentMinFlow {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMinCostFlow solver.
    MinCostFlow minCostFlow = new MinCostFlow();

    // Define four parallel arrays: sources, destinations, capacities, and unit costs
    // between each pair.
    int[] startNodes =
        new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
    int[] endNodes =
        new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
    int[] capacities =
        new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    int[] unitCosts = new int[] {
        0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0};

    int source = 0;
    int sink = 9;
    int tasks = 4;
    // Define an array of supplies at each node.
    int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = minCostFlow.addArcWithCapacityAndUnitCost(
          startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Add node supplies.
    for (int i = 0; i < supplies.length; ++i) {
      minCostFlow.setNodeSupply(i, supplies[i]);
    }

    // Find the min cost flow.
    MinCostFlowBase.Status status = minCostFlow.solve();

    if (status == MinCostFlow.Status.OPTIMAL) {
      System.out.println("Total cost: " + minCostFlow.getOptimalCost());
      System.out.println();
      for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) {
          // Arcs in the solution have a flow value of 1. Their start and end nodes
          // give an assignment of worker to task.
          if (minCostFlow.getFlow(i) > 0) {
            System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
                + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
          }
        }
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private AssignmentMinFlow() {}
}

C#

using System;
using Google.OrTools.Graph;

public class AssignmentMinFlow
{
    static void Main()
    {
        // Instantiate a SimpleMinCostFlow solver.
        MinCostFlow minCostFlow = new MinCostFlow();

        // Define four parallel arrays: sources, destinations, capacities, and unit costs
        // between each pair.
        int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 };
        int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 };
        int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
        int[] unitCosts = { 0,   0,  0,  0,   90, 76,  75, 70,  35, 85, 55, 65,
                            125, 95, 90, 105, 45, 110, 95, 115, 0,  0,  0,  0 };

        int source = 0;
        int sink = 9;
        int tasks = 4;
        // Define an array of supplies at each node.
        int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc =
                minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Add node supplies.
        for (int i = 0; i < supplies.Length; ++i)
        {
            minCostFlow.SetNodeSupply(i, supplies[i]);
        }

        // Find the min cost flow.
        MinCostFlow.Status status = minCostFlow.Solve();

        if (status == MinCostFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
            Console.WriteLine("");
            for (int i = 0; i < minCostFlow.NumArcs(); ++i)
            {
                // Can ignore arcs leading out of source or into sink.
                if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink)
                {
                    // Arcs in the solution have a flow value of 1. Their start and end nodes
                    // give an assignment of worker to task.
                    if (minCostFlow.Flow(i) > 0)
                    {
                        Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                          " Cost: " + minCostFlow.UnitCost(i));
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("Solving the min cost flow problem failed.");
            Console.WriteLine("Solver status: " + status);
        }
    }
}

Phân công theo nhóm nhân viên

Phần này trình bày một vấn đề chung hơn về bài tập. Trong bài toán này, sáu thì worker được chia thành hai nhóm. Vấn đề là giao bốn nhiệm vụ cho để khối lượng công việc được cân bằng đồng đều giữa các nhóm. do đó, mỗi nhóm thực hiện hai nhiệm vụ.

Để tìm cách giải quyết MIP cho bài toán này, hãy xem Giao việc với nhóm nhân viên.

Các phần sau đây mô tả một chương trình giải bài toán này bằng cách sử dụng hàm tối thiểu công cụ giải quyết luồng chi phí.

Nhập thư viện

Mã sau đây nhập thư viện bắt buộc.

Python

from ortools.graph.python import min_cost_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

C#

using System;
using Google.OrTools.Graph;

Khai báo trình giải

Mã sau đây tạo trình giải quyết luồng chi phí tối thiểu.

Python

smcf = min_cost_flow.SimpleMinCostFlow()

C++

// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;

Java

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

C#

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

Tạo dữ liệu

Đoạn mã sau đây sẽ tạo dữ liệu cho chương trình.

Python

# Define the directed graph for the flow.
team_a = [1, 3, 5]
team_b = [2, 4, 6]

start_nodes = (
    # fmt: off
  [0, 0]
  + [11, 11, 11]
  + [12, 12, 12]
  + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
  + [7, 8, 9, 10]
    # fmt: on
)
end_nodes = (
    # fmt: off
  [11, 12]
  + team_a
  + team_b
  + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10]
  + [13, 13, 13, 13]
    # fmt: on
)
capacities = (
    # fmt: off
  [2, 2]
  + [1, 1, 1]
  + [1, 1, 1]
  + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  + [1, 1, 1, 1]
    # fmt: on
)
costs = (
    # fmt: off
  [0, 0]
  + [0, 0, 0]
  + [0, 0, 0]
  + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95]
  + [0, 0, 0, 0]
    # fmt: on
)

source = 0
sink = 13
tasks = 4
# Define an array of supplies at each node.
supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

C++

// Define the directed graph for the flow.
const std::vector<int64_t> team_A = {1, 3, 5};
const std::vector<int64_t> team_B = {2, 4, 6};

const std::vector<int64_t> start_nodes = {
    0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
    3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
const std::vector<int64_t> end_nodes = {
    11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
    9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13};
const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const std::vector<int64_t> unit_costs = {
    0,  0,   0,  0,  0,   0,  0,   0,   90, 76,  75, 70,
    35, 85,  55, 65, 125, 95, 90,  105, 45, 110, 95, 115,
    60, 105, 80, 75, 45,  65, 110, 95,  0,  0,   0,  0};

const int64_t source = 0;
const int64_t sink = 13;
const int64_t tasks = 4;
// Define an array of supplies at each node.
const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0,
                                       0,     0, 0, 0, 0, 0, -tasks};

Java

// Define the directed graph for the flow.
// int[] teamA = new int[] {1, 3, 5};
// int[] teamB = new int[] {2, 4, 6};

int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
    4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7,
    8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13};
int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95,
    90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0};

int source = 0;
int sink = 13;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

C#

// Define the directed graph for the flow.
int[] teamA = { 1, 3, 5 };
int[] teamB = { 2, 4, 6 };

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair.
int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
                     3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10 };
int[] endNodes = { 11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
                   9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13 };
int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int[] unitCosts = { 0,  0,   0,  0,   0,  0,   0,  0,   90, 76, 75, 70, 35,  85, 55, 65, 125, 95,
                    90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0,  0,  0,   0 };

int source = 0;
int sink = 13;
int tasks = 4;
// Define an array of supplies at each node.
int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

Worker tương ứng với các nút từ 1 đến 6. Nhóm A gồm nhân viên 1, 3 và 5, nhóm B gồm các công nhân 2, 4 và 6. Các nhiệm vụ được đánh số từ 7 đến 10.

Có 2 nút mới, 11 và 12, giữa nguồn và worker. Nút 11 là được kết nối với các nút cho nhóm A và Nút 12 được kết nối với các nút cho nhóm B, với các cung có sức chứa 1. Biểu đồ dưới đây chỉ cho thấy các nút và cung từ nguồn đến worker.

biểu đồ luồng chi phí mạng

Chìa khoá để cân bằng khối lượng công việc là nguồn 0 được kết nối với các nút 11 và 12 theo cung năng lượng 2. Điều này có nghĩa là các nút 11 và 12 (và do đó nhóm A và B) có thể có tối đa 2 luồng. Do đó, mỗi nhóm có thể thực hiện tối đa hai nhiệm vụ.

Tạo các quy tắc ràng buộc

Python

# Add each arc.
for i in range(0, len(start_nodes)):
    smcf.add_arc_with_capacity_and_unit_cost(
        start_nodes[i], end_nodes[i], capacities[i], costs[i]
    )

# Add node supplies.
for i in range(0, len(supplies)):
    smcf.set_node_supply(i, supplies[i])

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
      start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
  if (arc != i) LOG(FATAL) << "Internal error";
}

// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
  min_cost_flow.SetNodeSupply(i, supplies[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = minCostFlow.addArcWithCapacityAndUnitCost(
      startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
  minCostFlow.setNodeSupply(i, supplies[i]);
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc =
        minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
    minCostFlow.SetNodeSupply(i, supplies[i]);
}

Gọi trình giải

Python

# Find the minimum cost flow between node 0 and node 10.
status = smcf.solve()

C++

// Find the min cost flow.
int status = min_cost_flow.Solve();

Java

// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();

C#

// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();

Kết quả của chương trình

Python

if status == smcf.OPTIMAL:
    print("Total cost = ", smcf.optimal_cost())
    print()
    for arc in range(smcf.num_arcs()):
        # Can ignore arcs leading out of source or intermediate, or into sink.
        if (
            smcf.tail(arc) != source
            and smcf.tail(arc) != 11
            and smcf.tail(arc) != 12
            and smcf.head(arc) != sink
        ):

            # Arcs in the solution will have a flow value of 1.
            # There start and end nodes give an assignment of worker to task.
            if smcf.flow(arc) > 0:
                print(
                    "Worker %d assigned to task %d.  Cost = %d"
                    % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                )
else:
    print("There was an issue with the min cost flow input.")
    print(f"Status: {status}")

C++

if (status == MinCostFlow::OPTIMAL) {
  LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
  LOG(INFO) << "";
  for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
    // Can ignore arcs leading out of source or intermediate nodes, or into
    // sink.
    if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 &&
        min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end
      // nodes give an assignment of worker to task.
      if (min_cost_flow.Flow(i) > 0) {
        LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                  << " assigned to task " << min_cost_flow.Head(i)
                  << " Cost: " << min_cost_flow.UnitCost(i);
      }
    }
  }
} else {
  LOG(INFO) << "Solving the min cost flow problem failed.";
  LOG(INFO) << "Solver status: " << status;
}

Java

if (status == MinCostFlow.Status.OPTIMAL) {
  System.out.println("Total cost: " + minCostFlow.getOptimalCost());
  System.out.println();
  for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
    // Can ignore arcs leading out of source or intermediate nodes, or into sink.
    if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11
        && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) {
      // Arcs in the solution have a flow value of 1. Their start and end nodes
      // give an assignment of worker to task.
      if (minCostFlow.getFlow(i) > 0) {
        System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
            + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
      }
    }
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == MinCostFlow.Status.OPTIMAL)
{
    Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
    Console.WriteLine("");
    for (int i = 0; i < minCostFlow.NumArcs(); ++i)
    {
        // Can ignore arcs leading out of source or into sink.
        if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 &&
            minCostFlow.Head(i) != sink)
        {
            // Arcs in the solution have a flow value of 1. Their start and end nodes
            // give an assignment of worker to task.
            if (minCostFlow.Flow(i) > 0)
            {
                Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                  " Cost: " + minCostFlow.UnitCost(i));
            }
        }
    }
}
else
{
    Console.WriteLine("Solving the min cost flow problem failed.");
    Console.WriteLine("Solver status: " + status);
}

Sau đây là kết quả của chương trình.

Total cost = 250

Worker 1 assigned to task 9.  Cost =  75
Worker 2 assigned to task 7.  Cost =  35
Worker 5 assigned to task 10.  Cost =  75
Worker 6 assigned to task 8.  Cost =  65

Time = 0.00031 seconds

Nhóm A được giao nhiệm vụ 9 và 10, trong khi nhóm B được giao nhiệm vụ 7 và 8.

Xin lưu ý rằng trình giải quy trình chi phí tối thiểu sẽ giải quyết vấn đề này nhanh hơn so với Trình giải mã MIP mất khoảng 0,006 giây.

Toàn bộ chương trình

Toàn bộ chương trình được hiển thị dưới đây.

Python

"""Assignment with teams of workers."""
from ortools.graph.python import min_cost_flow


def main():
    """Solving an Assignment with teams of worker."""
    smcf = min_cost_flow.SimpleMinCostFlow()

    # Define the directed graph for the flow.
    team_a = [1, 3, 5]
    team_b = [2, 4, 6]

    start_nodes = (
        # fmt: off
      [0, 0]
      + [11, 11, 11]
      + [12, 12, 12]
      + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
      + [7, 8, 9, 10]
        # fmt: on
    )
    end_nodes = (
        # fmt: off
      [11, 12]
      + team_a
      + team_b
      + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10]
      + [13, 13, 13, 13]
        # fmt: on
    )
    capacities = (
        # fmt: off
      [2, 2]
      + [1, 1, 1]
      + [1, 1, 1]
      + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
      + [1, 1, 1, 1]
        # fmt: on
    )
    costs = (
        # fmt: off
      [0, 0]
      + [0, 0, 0]
      + [0, 0, 0]
      + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95]
      + [0, 0, 0, 0]
        # fmt: on
    )

    source = 0
    sink = 13
    tasks = 4
    # Define an array of supplies at each node.
    supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]

    # Add each arc.
    for i in range(0, len(start_nodes)):
        smcf.add_arc_with_capacity_and_unit_cost(
            start_nodes[i], end_nodes[i], capacities[i], costs[i]
        )

    # Add node supplies.
    for i in range(0, len(supplies)):
        smcf.set_node_supply(i, supplies[i])

    # Find the minimum cost flow between node 0 and node 10.
    status = smcf.solve()

    if status == smcf.OPTIMAL:
        print("Total cost = ", smcf.optimal_cost())
        print()
        for arc in range(smcf.num_arcs()):
            # Can ignore arcs leading out of source or intermediate, or into sink.
            if (
                smcf.tail(arc) != source
                and smcf.tail(arc) != 11
                and smcf.tail(arc) != 12
                and smcf.head(arc) != sink
            ):

                # Arcs in the solution will have a flow value of 1.
                # There start and end nodes give an assignment of worker to task.
                if smcf.flow(arc) > 0:
                    print(
                        "Worker %d assigned to task %d.  Cost = %d"
                        % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc))
                    )
    else:
        print("There was an issue with the min cost flow input.")
        print(f"Status: {status}")


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

namespace operations_research {
// MinCostFlow simple interface example.
void BalanceMinFlow() {
  // Instantiate a SimpleMinCostFlow solver.
  SimpleMinCostFlow min_cost_flow;

  // Define the directed graph for the flow.
  const std::vector<int64_t> team_A = {1, 3, 5};
  const std::vector<int64_t> team_B = {2, 4, 6};

  const std::vector<int64_t> start_nodes = {
      0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
      3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
  const std::vector<int64_t> end_nodes = {
      11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
      9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13};
  const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  const std::vector<int64_t> unit_costs = {
      0,  0,   0,  0,  0,   0,  0,   0,   90, 76,  75, 70,
      35, 85,  55, 65, 125, 95, 90,  105, 45, 110, 95, 115,
      60, 105, 80, 75, 45,  65, 110, 95,  0,  0,   0,  0};

  const int64_t source = 0;
  const int64_t sink = 13;
  const int64_t tasks = 4;
  // Define an array of supplies at each node.
  const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0,
                                         0,     0, 0, 0, 0, 0, -tasks};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
        start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
    if (arc != i) LOG(FATAL) << "Internal error";
  }

  // Add node supplies.
  for (int i = 0; i < supplies.size(); ++i) {
    min_cost_flow.SetNodeSupply(i, supplies[i]);
  }

  // Find the min cost flow.
  int status = min_cost_flow.Solve();

  if (status == MinCostFlow::OPTIMAL) {
    LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
    LOG(INFO) << "";
    for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
      // Can ignore arcs leading out of source or intermediate nodes, or into
      // sink.
      if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 &&
          min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) {
        // Arcs in the solution have a flow value of 1. Their start and end
        // nodes give an assignment of worker to task.
        if (min_cost_flow.Flow(i) > 0) {
          LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
                    << " assigned to task " << min_cost_flow.Head(i)
                    << " Cost: " << min_cost_flow.UnitCost(i);
        }
      }
    }
  } else {
    LOG(INFO) << "Solving the min cost flow problem failed.";
    LOG(INFO) << "Solver status: " << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::BalanceMinFlow();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

/** Minimal Assignment Min Flow. */
public class BalanceMinFlow {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMinCostFlow solver.
    MinCostFlow minCostFlow = new MinCostFlow();

    // Define the directed graph for the flow.
    // int[] teamA = new int[] {1, 3, 5};
    // int[] teamB = new int[] {2, 4, 6};

    int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
        4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10};
    int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7,
        8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13};
    int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95,
        90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0};

    int source = 0;
    int sink = 13;
    int tasks = 4;
    // Define an array of supplies at each node.
    int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = minCostFlow.addArcWithCapacityAndUnitCost(
          startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Add node supplies.
    for (int i = 0; i < supplies.length; ++i) {
      minCostFlow.setNodeSupply(i, supplies[i]);
    }

    // Find the min cost flow.
    MinCostFlowBase.Status status = minCostFlow.solve();

    if (status == MinCostFlow.Status.OPTIMAL) {
      System.out.println("Total cost: " + minCostFlow.getOptimalCost());
      System.out.println();
      for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
        // Can ignore arcs leading out of source or intermediate nodes, or into sink.
        if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11
            && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) {
          // Arcs in the solution have a flow value of 1. Their start and end nodes
          // give an assignment of worker to task.
          if (minCostFlow.getFlow(i) > 0) {
            System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task "
                + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i));
          }
        }
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private BalanceMinFlow() {}
}

C#

using System;
using Google.OrTools.Graph;

public class BalanceMinFlow
{
    static void Main()
    {
        // Instantiate a SimpleMinCostFlow solver.
        MinCostFlow minCostFlow = new MinCostFlow();

        // Define the directed graph for the flow.
        int[] teamA = { 1, 3, 5 };
        int[] teamB = { 2, 4, 6 };

        // Define four parallel arrays: sources, destinations, capacities, and unit costs
        // between each pair.
        int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
                             3, 3, 4,  4,  4,  4,  5,  5,  5, 5, 6, 6, 6, 6, 7, 8, 9, 10 };
        int[] endNodes = { 11, 12, 1, 3, 5, 2,  4, 6, 7, 8,  9, 10, 7, 8,  9,  10, 7,  8,
                           9,  10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8,  9, 10, 13, 13, 13, 13 };
        int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
        int[] unitCosts = { 0,  0,   0,  0,   0,  0,   0,  0,   90, 76, 75, 70, 35,  85, 55, 65, 125, 95,
                            90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0,  0,  0,   0 };

        int source = 0;
        int sink = 13;
        int tasks = 4;
        // Define an array of supplies at each node.
        int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc =
                minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Add node supplies.
        for (int i = 0; i < supplies.Length; ++i)
        {
            minCostFlow.SetNodeSupply(i, supplies[i]);
        }

        // Find the min cost flow.
        MinCostFlow.Status status = minCostFlow.Solve();

        if (status == MinCostFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Total cost: " + minCostFlow.OptimalCost());
            Console.WriteLine("");
            for (int i = 0; i < minCostFlow.NumArcs(); ++i)
            {
                // Can ignore arcs leading out of source or into sink.
                if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 &&
                    minCostFlow.Head(i) != sink)
                {
                    // Arcs in the solution have a flow value of 1. Their start and end nodes
                    // give an assignment of worker to task.
                    if (minCostFlow.Flow(i) > 0)
                    {
                        Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) +
                                          " Cost: " + minCostFlow.UnitCost(i));
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("Solving the min cost flow problem failed.");
            Console.WriteLine("Solver status: " + status);
        }
    }
}