Giải quyết vấn đề nhiều ba lô

Phần này giải thích cách giải bài toán knapsack cho nhiều knapsacks bằng cả trình giải mã MIP và trình giải mã CP-SAT. Trong trường hợp này, thường được gọi là các thùng rác thay vì các thùng rác.

Ví dụ tiếp theo cho thấy cách tìm cách tối ưu để đóng gói các mục vào năm thùng.

Ví dụ:

Như trong ví dụ trước, bạn bắt đầu với một tập hợp các mục có trọng số và giá trị khác nhau. Vấn đề là đóng gói một phần phụ của các mục vào năm thùng, mỗi thùng có dung lượng tối đa là 100, để tổng giá trị đóng gói là tối đa.

Các phần sau đây trình bày các phần của chương trình để giải quyết vấn đề này. Để biết toàn bộ chương trình, hãy xem phần Hoàn tất chương trình.

Giải pháp MIP

Các phần sau đây mô tả cách giải quyết vấn đề bằng trình bao bọc MPSolver.

Nhập thư viện

Mã sau đây nhập các thư viện bắt buộc.

Python

from ortools.linear_solver import pywraplp

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

Tạo dữ liệu

Mã sau đây tạo ra dữ liệu cho vấn đề.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
data["num_items"] = len(data["weights"])
data["all_items"] = range(data["num_items"])

data["bin_capacities"] = [100, 100, 100, 100, 100]
data["num_bins"] = len(data["bin_capacities"])
data["all_bins"] = range(data["num_bins"])

C++

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = weights.size();
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = bin_capacities.size();
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

Java

final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final double[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

C#

double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

double[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

Các dữ liệu này bao gồm:

  • weights: Một vectơ chứa trọng số của các mục.
  • values: Vectơ chứa giá trị của các mục.
  • capacities: Một vectơ chứa dung tích của các thùng.

Ở ví dụ này, tất cả các thùng đều có cùng dung lượng, nhưng điều đó không cần phải nói chung.

Khai báo trình giải mã MIP

Mã sau đây khai báo trình phân giải MIP.

Python

solver = pywraplp.Solver.CreateSolver("SCIP")
if solver is None:
    print("SCIP solver unavailable.")
    return

C++

  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

// Create the linear solver with the SCIP backend.
Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

Tạo các biến

Mã sau đây tạo ra các biến cho sự cố.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data["all_items"]:
    for b in data["all_bins"]:
        x[i, b] = solver.BoolVar(f"x_{i}_{b}")

C++

// x[i][b] = 1 if item i is packed in bin b.
std::vector<std::vector<const MPVariable*>> x(
    num_items, std::vector<const MPVariable*>(num_bins));
for (int i : all_items) {
  for (int b : all_bins) {
    x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
  }
}

Java

MPVariable[][] x = new MPVariable[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
  }
}

C#

Variable[,] x = new Variable[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
    }
}

Mỗi x[(i, j)] là một biến số 0-1, trong đó i là một mục và j là một thùng rác. Trong giải pháp, x[(i, j)] sẽ là 1 nếu mục i được đặt trong thùng j và 0 nếu không.

Xác định các điều kiện ràng buộc

Mã sau đây xác định các điều kiện ràng buộc cho vấn đề:

Python

# Each item is assigned to at most one bin.
for i in data["all_items"]:
    solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

# The amount packed in each bin cannot exceed its capacity.
for b in data["all_bins"]:
    solver.Add(
        sum(x[i, b] * data["weights"][i] for i in data["all_items"])
        <= data["bin_capacities"][b]
    )

C++

// Each item is assigned to at most one bin.
for (int i : all_items) {
  LinearExpr sum;
  for (int b : all_bins) {
    sum += x[i][b];
  }
  solver->MakeRowConstraint(sum <= 1.0);
}
// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += LinearExpr(x[i][b]) * weights[i];
  }
  solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
}

Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int b : allBins) {
    constraint.setCoefficient(x[i][b], 1);
  }
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
  for (int i : allItems) {
    constraint.setCoefficient(x[i][b], weights[i]);
  }
}

C#

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int b in allBins)
    {
        constraint.SetCoefficient(x[i, b], 1);
    }
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
    foreach (int i in allItems)
    {
        constraint.SetCoefficient(x[i, b], Weights[i]);
    }
}

Các ràng buộc bao gồm:

  • Mỗi mục có thể được đặt vào tối đa một thùng. Quy tắc ràng buộc này được thiết lập bằng cách yêu cầu tổng của x[i, j] trên tất cả các thùng j nhỏ hơn hoặc bằng 1.
  • Tổng trọng lượng đóng gói trong mỗi thùng không được vượt quá sức chứa của thùng. Quy tắc ràng buộc này được thiết lập bằng cách yêu cầu tổng trọng lượng của các mục đặt trong thùng rác j nhỏ hơn hoặc bằng sức chứa của thùng rác.

Xác định mục tiêu

Mã sau đây xác định hàm mục tiêu cho vấn đề, đó là tổng giá trị của các mục được đóng gói.

Python

# Maximize total value of packed items.
objective = solver.Objective()
for i in data["all_items"]:
    for b in data["all_bins"]:
        objective.SetCoefficient(x[i, b], data["values"][i])
objective.SetMaximization()

C++

// Maximize total value of packed items.
MPObjective* const objective = solver->MutableObjective();
LinearExpr objective_value;
for (int i : all_items) {
  for (int b : all_bins) {
    objective_value += LinearExpr(x[i][b]) * values[i];
  }
}
objective->MaximizeLinearExpr(objective_value);

Java

// Maximize total value of packed items.
MPObjective objective = solver.objective();
for (int i : allItems) {
  for (int b : allBins) {
    objective.setCoefficient(x[i][b], values[i]);
  }
}
objective.setMaximization();

C#

Objective objective = solver.Objective();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        objective.SetCoefficient(x[i, b], Values[i]);
    }
}
objective.SetMaximization();

Lưu ý rằng x[i, j] * data['values'][i] sẽ thêm giá trị của mục i vào đối tượng nếu mục đó được đặt trong thùng j. Nếu không đặt i vào bất kỳ thùng rác nào, giá trị của ngăn đó không đóng góp vào mục tiêu.

Gọi trình giải toán

Mã sau đây gọi trình giải toán.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

final MPSolver.ResultStatus status = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

Mã sau đây in ra giải pháp cho vấn đề.

Python

if status == pywraplp.Solver.OPTIMAL:
    print(f"Total packed value: {objective.Value()}")
    total_weight = 0
    for b in data["all_bins"]:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in data["all_items"]:
            if x[i, b].solution_value() > 0:
                print(
                    f"Item {i} weight: {data['weights'][i]} value: {data['values'][i]}"
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++

if (result_status == MPSolver::OPTIMAL) {
  LOG(INFO) << "Total packed value: " << objective->Value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      if (x[i][b]->solution_value() > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

Java

// Check that the problem has an optimal solution.
if (status == MPSolver.ResultStatus.OPTIMAL) {
  System.out.println("Total packed value: " + objective.value());
  double totalWeight = 0;
  for (int b : allBins) {
    double binWeight = 0;
    double binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (x[i][b].solutionValue() == 1) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

// Check that the problem has an optimal solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL)
{
    Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine("Bin " + b);
        foreach (int i in allItems)
        {
            if (x[i, b].SolutionValue() == 1)
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("The problem does not have an optimal solution!");
}

Đối với mỗi thùng, mã sẽ hiển thị các mục được đặt vào thùng đó, cũng như tổng giá trị và trọng lượng của thùng. Mã này cũng cho biết tổng giá trị và trọng lượng tổng thể của các mặt hàng được đóng gói.

Khi chạy chương trình, bạn sẽ thấy kết quả sau.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

Hoàn thành chương trình

Dưới đây là danh sách các chương trình hoàn chỉnh cho nhiều ba lô

Python

"""Solve a multiple knapsack problem using a MIP solver."""
from ortools.linear_solver import pywraplp


def main():
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    data["num_items"] = len(data["weights"])
    data["all_items"] = range(data["num_items"])

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    data["num_bins"] = len(data["bin_capacities"])
    data["all_bins"] = range(data["num_bins"])

    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")
    if solver is None:
        print("SCIP solver unavailable.")
        return

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in data["all_items"]:
        for b in data["all_bins"]:
            x[i, b] = solver.BoolVar(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in data["all_items"]:
        solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

    # The amount packed in each bin cannot exceed its capacity.
    for b in data["all_bins"]:
        solver.Add(
            sum(x[i, b] * data["weights"][i] for i in data["all_items"])
            <= data["bin_capacities"][b]
        )

    # Objective.
    # Maximize total value of packed items.
    objective = solver.Objective()
    for i in data["all_items"]:
        for b in data["all_bins"]:
            objective.SetCoefficient(x[i, b], data["values"][i])
    objective.SetMaximization()

    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    if status == pywraplp.Solver.OPTIMAL:
        print(f"Total packed value: {objective.Value()}")
        total_weight = 0
        for b in data["all_bins"]:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in data["all_items"]:
                if x[i, b].solution_value() > 0:
                    print(
                        f"Item {i} weight: {data['weights'][i]} value: {data['values'][i]}"
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++

// Solve a multiple knapsack problem using a MIP solver.
#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {

void MultipleKnapsackMip() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = weights.size();
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = bin_capacities.size();
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables.
  // x[i][b] = 1 if item i is packed in bin b.
  std::vector<std::vector<const MPVariable*>> x(
      num_items, std::vector<const MPVariable*>(num_bins));
  for (int i : all_items) {
    for (int b : all_bins) {
      x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    LinearExpr sum;
    for (int b : all_bins) {
      sum += x[i][b];
    }
    solver->MakeRowConstraint(sum <= 1.0);
  }
  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += LinearExpr(x[i][b]) * weights[i];
    }
    solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  MPObjective* const objective = solver->MutableObjective();
  LinearExpr objective_value;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective_value += LinearExpr(x[i][b]) * values[i];
    }
  }
  objective->MaximizeLinearExpr(objective_value);

  const MPSolver::ResultStatus result_status = solver->Solve();

  if (result_status == MPSolver::OPTIMAL) {
    LOG(INFO) << "Total packed value: " << objective->Value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        if (x[i][b]->solution_value() > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::MultipleKnapsackMip();
  return EXIT_SUCCESS;
}

Java

// Solve a multiple knapsack problem using a MIP solver.
package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** Multiple knapsack problem. */
public class MultipleKnapsackMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final double[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables.
    MPVariable[][] x = new MPVariable[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int b : allBins) {
        constraint.setCoefficient(x[i][b], 1);
      }
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
      for (int i : allItems) {
        constraint.setCoefficient(x[i][b], weights[i]);
      }
    }

    // Objective.
    // Maximize total value of packed items.
    MPObjective objective = solver.objective();
    for (int i : allItems) {
      for (int b : allBins) {
        objective.setCoefficient(x[i][b], values[i]);
      }
    }
    objective.setMaximization();

    final MPSolver.ResultStatus status = solver.solve();

    // Check that the problem has an optimal solution.
    if (status == MPSolver.ResultStatus.OPTIMAL) {
      System.out.println("Total packed value: " + objective.value());
      double totalWeight = 0;
      for (int b : allBins) {
        double binWeight = 0;
        double binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (x[i][b].solutionValue() == 1) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackMip() {}
}

C#

// Solve a multiple knapsack problem using a MIP solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class MultipleKnapsackMip
{
    public static void Main()
    {
        // Instantiate the data problem.
        double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        double[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Create the linear solver with the SCIP backend.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        Variable[,] x = new Variable[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int b in allBins)
            {
                constraint.SetCoefficient(x[i, b], 1);
            }
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
            foreach (int i in allItems)
            {
                constraint.SetCoefficient(x[i, b], Weights[i]);
            }
        }

        // Objective.
        Objective objective = solver.Objective();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                objective.SetCoefficient(x[i, b], Values[i]);
            }
        }
        objective.SetMaximization();

        Solver.ResultStatus resultStatus = solver.Solve();

        // Check that the problem has an optimal solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL)
        {
            Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine("Bin " + b);
                foreach (int i in allItems)
                {
                    if (x[i, b].SolutionValue() == 1)
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("The problem does not have an optimal solution!");
        }
    }
}

Giải pháp CP SAT

Phần sau đây mô tả cách giải bài toán này bằng trình giải mã CP-SAT.

Nhập thư viện

Mã sau đây nhập các thư viện bắt buộc.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}

Khai báo mô hình

Mã sau đây khai báo mô hình CP-SAT.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Tạo dữ liệu

Mã sau đây thiết lập dữ liệu cho vấn đề.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
data["num_items"] = len(data["weights"])
data["all_items"] = range(data["num_items"])

data["bin_capacities"] = [100, 100, 100, 100, 100]
data["num_bins"] = len(data["bin_capacities"])
data["all_bins"] = range(data["num_bins"])

C++

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = static_cast<int>(weights.size());
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = static_cast<int>(bin_capacities.size());
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

Java

final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final int[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

C#

int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

int[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

Mảng costs tương ứng với bảng chi phí để chỉ định nhân viên cho các nhiệm vụ, như trình bày ở trên.

Tạo các biến

Mã sau đây tạo ra các biến số nguyên nhị phân cho vấn đề.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data["all_items"]:
    for b in data["all_bins"]:
        x[i, b] = model.NewBoolVar(f"x_{i}_{b}")

C++

// x[i, b] = 1 if item i is packed in bin b.
std::map<std::tuple<int, int>, BoolVar> x;
for (int i : all_items) {
  for (int b : all_bins) {
    auto key = std::make_tuple(i, b);
    x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
  }
}

Java

Literal[][] x = new Literal[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = model.newBoolVar("x_" + i + "_" + b);
  }
}

C#

ILiteral[,] x = new ILiteral[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = model.NewBoolVar($"x_{i}_{b}");
    }
}

Tạo các điều kiện ràng buộc

Mã sau đây tạo ra những ràng buộc cho vấn đề của bạn.

Python

# Each item is assigned to at most one bin.
for i in data["all_items"]:
    model.AddAtMostOne(x[i, b] for b in data["all_bins"])

# The amount packed in each bin cannot exceed its capacity.
for b in data["all_bins"]:
    model.Add(
        sum(x[i, b] * data["weights"][i] for i in data["all_items"])
        <= data["bin_capacities"][b]
    )

C++

// Each item is assigned to at most one bin.
for (int i : all_items) {
  std::vector<BoolVar> copies;
  for (int b : all_bins) {
    copies.push_back(x[std::make_tuple(i, b)]);
  }
  cp_model.AddAtMostOne(copies);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += x[std::make_tuple(i, b)] * weights[i];
  }
  cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
}

Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  List<Literal> bins = new ArrayList<>();
  for (int b : allBins) {
    bins.add(x[i][b]);
  }
  model.addAtMostOne(bins);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  LinearExprBuilder load = LinearExpr.newBuilder();
  for (int i : allItems) {
    load.addTerm(x[i][b], weights[i]);
  }
  model.addLessOrEqual(load, binCapacities[b]);
}

C#

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    List<ILiteral> literals = new List<ILiteral>();
    foreach (int b in allBins)
    {
        literals.Add(x[i, b]);
    }
    model.AddAtMostOne(literals);
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    List<ILiteral> items = new List<ILiteral>();
    foreach (int i in allItems)
    {
        items.Add(x[i, b]);
    }
    model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
}

Tạo hàm mục tiêu

Mã sau đây tạo ra hàm mục tiêu cho vấn đề.

Python

# Maximize total value of packed items.
objective = []
for i in data["all_items"]:
    for b in data["all_bins"]:
        objective.append(cp_model.LinearExpr.Term(x[i, b], data["values"][i]))
model.Maximize(cp_model.LinearExpr.Sum(objective))

C++

// Maximize total value of packed items.
LinearExpr objective;
for (int i : all_items) {
  for (int b : all_bins) {
    objective += x[std::make_tuple(i, b)] * values[i];
  }
}
cp_model.Maximize(objective);

Java

// Maximize total value of packed items.
LinearExprBuilder obj = LinearExpr.newBuilder();
for (int i : allItems) {
  for (int b : allBins) {
    obj.addTerm(x[i][b], values[i]);
  }
}
model.maximize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        obj.AddTerm(x[i, b], Values[i]);
    }
}
model.Maximize(obj);

Giá trị của hàm mục tiêu là tổng chi phí trên tất cả các biến được trình giải chỉ định giá trị 1.

Gọi trình giải toán

Mã sau đây gọi trình giải toán.

Python

solver = cp_model.CpSolver()
status = solver.Solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
final CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

Mã sau đây in ra giải pháp cho vấn đề.

Python

if status == cp_model.OPTIMAL:
    print(f"Total packed value: {solver.ObjectiveValue()}")
    total_weight = 0
    for b in data["all_bins"]:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in data["all_items"]:
            if solver.Value(x[i, b]) > 0:
                print(
                    f"Item {i} weight: {data['weights'][i]} value: {data['values'][i]}"
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Total packed value: " << response.objective_value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      auto key = std::make_tuple(i, b);
      if (SolutionIntegerValue(response, x[key]) > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

Java

// Check that the problem has an optimal solution.
if (status == CpSolverStatus.OPTIMAL) {
  System.out.println("Total packed value: " + solver.objectiveValue());
  long totalWeight = 0;
  for (int b : allBins) {
    long binWeight = 0;
    long binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (solver.booleanValue(x[i][b])) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine($"Bin {b}");
        foreach (int i in allItems)
        {
            if (solver.BooleanValue(x[i, b]))
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("No solution found.");
}

Sau đây là kết quả của chương trình.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

Hoàn thành chương trình

Dưới đây là các chương trình hoàn chỉnh cho giải pháp CP-SAT.

Python

"""Solves a multiple knapsack problem using the CP-SAT solver."""
from ortools.sat.python import cp_model


def main():
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    data["num_items"] = len(data["weights"])
    data["all_items"] = range(data["num_items"])

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    data["num_bins"] = len(data["bin_capacities"])
    data["all_bins"] = range(data["num_bins"])

    model = cp_model.CpModel()

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in data["all_items"]:
        for b in data["all_bins"]:
            x[i, b] = model.NewBoolVar(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in data["all_items"]:
        model.AddAtMostOne(x[i, b] for b in data["all_bins"])

    # The amount packed in each bin cannot exceed its capacity.
    for b in data["all_bins"]:
        model.Add(
            sum(x[i, b] * data["weights"][i] for i in data["all_items"])
            <= data["bin_capacities"][b]
        )

    # Objective.
    # Maximize total value of packed items.
    objective = []
    for i in data["all_items"]:
        for b in data["all_bins"]:
            objective.append(cp_model.LinearExpr.Term(x[i, b], data["values"][i]))
    model.Maximize(cp_model.LinearExpr.Sum(objective))

    solver = cp_model.CpSolver()
    status = solver.Solve(model)

    if status == cp_model.OPTIMAL:
        print(f"Total packed value: {solver.ObjectiveValue()}")
        total_weight = 0
        for b in data["all_bins"]:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in data["all_items"]:
                if solver.Value(x[i, b]) > 0:
                    print(
                        f"Item {i} weight: {data['weights'][i]} value: {data['values'][i]}"
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++

// Solves a multiple knapsack problem using the CP-SAT solver.
#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MultipleKnapsackSat() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = static_cast<int>(weights.size());
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = static_cast<int>(bin_capacities.size());
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  CpModelBuilder cp_model;

  // Variables.
  // x[i, b] = 1 if item i is packed in bin b.
  std::map<std::tuple<int, int>, BoolVar> x;
  for (int i : all_items) {
    for (int b : all_bins) {
      auto key = std::make_tuple(i, b);
      x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    std::vector<BoolVar> copies;
    for (int b : all_bins) {
      copies.push_back(x[std::make_tuple(i, b)]);
    }
    cp_model.AddAtMostOne(copies);
  }

  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += x[std::make_tuple(i, b)] * weights[i];
    }
    cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  LinearExpr objective;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective += x[std::make_tuple(i, b)] * values[i];
    }
  }
  cp_model.Maximize(objective);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Total packed value: " << response.objective_value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        auto key = std::make_tuple(i, b);
        if (SolutionIntegerValue(response, x[key]) > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}
}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MultipleKnapsackSat();
  return EXIT_SUCCESS;
}

Java

// Solves a multiple knapsack problem using the CP-SAT solver.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Sample showing how to solve a multiple knapsack problem. */
public class MultipleKnapsackSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final int[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    CpModel model = new CpModel();

    // Variables.
    Literal[][] x = new Literal[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = model.newBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      List<Literal> bins = new ArrayList<>();
      for (int b : allBins) {
        bins.add(x[i][b]);
      }
      model.addAtMostOne(bins);
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      LinearExprBuilder load = LinearExpr.newBuilder();
      for (int i : allItems) {
        load.addTerm(x[i][b], weights[i]);
      }
      model.addLessOrEqual(load, binCapacities[b]);
    }

    // Objective.
    // Maximize total value of packed items.
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int i : allItems) {
      for (int b : allBins) {
        obj.addTerm(x[i][b], values[i]);
      }
    }
    model.maximize(obj);

    CpSolver solver = new CpSolver();
    final CpSolverStatus status = solver.solve(model);

    // Check that the problem has an optimal solution.
    if (status == CpSolverStatus.OPTIMAL) {
      System.out.println("Total packed value: " + solver.objectiveValue());
      long totalWeight = 0;
      for (int b : allBins) {
        long binWeight = 0;
        long binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (solver.booleanValue(x[i][b])) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackSat() {}
}

C#

// Solves a multiple knapsack problem using the CP-SAT solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}