Problema de definição de trajeto de veículos com janelas de tempo

Muitos problemas de roteamento de veículos envolvem o agendamento de visitas a clientes que estão disponíveis apenas durante períodos específicos.

Esses problemas são conhecidos como problemas de roteamento do veículo com janelas de tempo (VRPTWs, na sigla em inglês).

Exemplo de VRPTW

Nesta página, vamos analisar um exemplo que mostra como resolver uma VRPTW. Como o problema envolve janelas de tempo, os dados incluem uma matriz de tempo, que contém os tempos de viagem entre os locais (em vez de uma matriz de distância, como nos exemplos anteriores).

O diagrama abaixo mostra os locais a serem visitados em azul e o depósito em preto. As janelas de tempo são mostradas acima de cada local. Consulte Coordenadas de local na seção VRP para mais detalhes sobre como os locais são definidos.

O objetivo é minimizar o tempo total de viagem dos veículos.

Resolver o exemplo de VRPTW com ferramentas OR

As seções abaixo descrevem como resolver o exemplo do VRPTW com as ferramentas OR.

Criar os dados

A função a seguir cria os dados para o problema.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data
Os dados consistem em:
  • data['time_matrix']: matriz de tempos de viagem entre locais. Isso é diferente dos exemplos anteriores, que usam uma matriz de distância. Se todos os veículos viajarem na mesma velocidade, você terá a mesma solução se usar uma matriz de distância ou de tempo, já que as distâncias de deslocamento são um múltiplo constante dos tempos de viagem.
  • data['time_windows']: matriz de períodos para os locais, que você pode considerar como horários solicitados para uma visita. Os veículos precisam visitar um local dentro do período de tempo.
  • data['num_vehicles']: o número de veículos na frota.
  • data['depot']: o índice do depósito.

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};
Os dados consistem em:
  • time_matrix: matriz de tempos de viagem entre locais. Isso é diferente dos exemplos anteriores, que usam uma matriz de distância. Se todos os veículos viajarem na mesma velocidade, você terá a mesma solução se usar uma matriz de distância ou de tempo, já que as distâncias de deslocamento são um múltiplo constante dos tempos de viagem.
  • time_windows: matriz de períodos para os locais, que você pode considerar como horários solicitados para uma visita. Os veículos precisam visitar um local dentro do período de tempo.
  • num_vehicles: o número de veículos na frota.
  • depot: o índice do depósito.

Java

static class DataModel {
  public final long[][] timeMatrix = {
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  public final long[][] timeWindows = {
      {0, 5}, // depot
      {7, 12}, // 1
      {10, 15}, // 2
      {16, 18}, // 3
      {10, 13}, // 4
      {0, 5}, // 5
      {5, 10}, // 6
      {0, 4}, // 7
      {5, 10}, // 8
      {0, 3}, // 9
      {10, 16}, // 10
      {10, 15}, // 11
      {0, 5}, // 12
      {5, 10}, // 13
      {7, 8}, // 14
      {10, 15}, // 15
      {11, 15}, // 16
  };
  public final int vehicleNumber = 4;
  public final int depot = 0;
}
Os dados consistem em:
  • timeMatrix: matriz de tempos de viagem entre locais. Isso é diferente dos exemplos anteriores, que usam uma matriz de distância. Se todos os veículos viajarem na mesma velocidade, você terá a mesma solução se usar uma matriz de distância ou de tempo, já que as distâncias de deslocamento são um múltiplo constante dos tempos de viagem.
  • timeWindows: matriz de períodos para os locais, que você pode considerar como horários solicitados para uma visita. Os veículos precisam visitar um local dentro do período de tempo.
  • vehicleNumber: o número de veículos na frota.
  • depot: o índice do depósito.

C#

class DataModel
{
    public long[,] TimeMatrix = {
        { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
        { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
        { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
        { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
        { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
        { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
        { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
        { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
        { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
        { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
        { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
        { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
        { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
        { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
        { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
        { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
        { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
    };
    public long[,] TimeWindows = {
        { 0, 5 },   // depot
        { 7, 12 },  // 1
        { 10, 15 }, // 2
        { 16, 18 }, // 3
        { 10, 13 }, // 4
        { 0, 5 },   // 5
        { 5, 10 },  // 6
        { 0, 4 },   // 7
        { 5, 10 },  // 8
        { 0, 3 },   // 9
        { 10, 16 }, // 10
        { 10, 15 }, // 11
        { 0, 5 },   // 12
        { 5, 10 },  // 13
        { 7, 8 },   // 14
        { 10, 15 }, // 15
        { 11, 15 }, // 16
    };
    public int VehicleNumber = 4;
    public int Depot = 0;
};
Os dados consistem em:
  • TimeMatrix: matriz de tempos de viagem entre locais. Isso é diferente dos exemplos anteriores, que usam uma matriz de distância. Se todos os veículos viajarem na mesma velocidade, você terá a mesma solução se usar uma matriz de distância ou de tempo, já que as distâncias de deslocamento são um múltiplo constante dos tempos de viagem.
  • TimeWindows: matriz de períodos para os locais, que você pode considerar como horários solicitados para uma visita. Os veículos precisam visitar um local dentro do período de tempo.
  • VehicleNumber: o número de veículos na frota.
  • Depot: o índice do depósito.

Horário de retorno de chamada

A função a seguir cria o callback de tempo e o transmite para o solucionador. Ele também define os custos do arco, que definem o custo da viagem, para serem os tempos de viagem entre locais.

Python

def time_callback(from_index, to_index):
    """Returns the travel time between the two nodes."""
    # Convert from routing variable Index to time matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data["time_matrix"][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(time_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

const int transit_callback_index = routing.RegisterTransitCallback(
    [&data, &manager](const int64_t from_index,
                      const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to time matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return data.time_matrix[from_node][to_node];
    });
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

Java

final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return data.timeMatrix[fromNode][toNode];
    });
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

C#

int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to time
                                                               // matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return data.TimeMatrix[fromNode, toNode];
                                                           });
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

Adicionar restrições de janela de tempo

O código a seguir adiciona restrições de janela de tempo para todos os locais.

Python

time = "Time"
routing.AddDimension(
    transit_callback_index,
    30,  # allow waiting time
    30,  # maximum time per vehicle
    False,  # Don't force start cumul to zero.
    time,
)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
    index = routing.Start(vehicle_id)
    time_dimension.CumulVar(index).SetRange(
        data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
    )
for i in range(data["num_vehicles"]):
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i))
    )
    routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

C++

const std::string time = "Time";
routing.AddDimension(transit_callback_index,  // transit callback index
                     int64_t{30},             // allow waiting time
                     int64_t{30},             // maximum time per vehicle
                     false,  // Don't force start cumul to zero
                     time);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
// Add time window constraints for each location except depot.
for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.num_vehicles; ++i) {
  const int64_t index = routing.Start(i);
  time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                           data.time_windows[0].second);
}
for (int i = 0; i < data.num_vehicles; ++i) {
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.Start(i)));
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.End(i)));
}

Java

routing.addDimension(transitCallbackIndex, // transit callback
    30, // allow waiting time
    30, // vehicle maximum capacities
    false, // start cumul to zero
    "Time");
RoutingDimension timeDimension = routing.getMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.vehicleNumber; ++i) {
  long index = routing.start(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
}
for (int i = 0; i < data.vehicleNumber; ++i) {
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
}

C#

routing.AddDimension(transitCallbackIndex, // transit callback
                     30,                   // allow waiting time
                     30,                   // vehicle maximum capacities
                     false,                // start cumul to zero
                     "Time");
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.VehicleNumber; ++i)
{
    long index = routing.Start(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
}
for (int i = 0; i < data.VehicleNumber; ++i)
{
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
}

O código cria uma dimensão para o tempo de viagem dos veículos, semelhante às dimensões para distância ou demandas de viagem nos exemplos anteriores. As dimensões acompanham as quantidades acumuladas no trajeto de um veículo. No código acima, time_dimension.CumulVar(index) é o tempo de viagem cumulativo quando um veículo chega ao local com o index especificado.

A dimensão é criada usando o método AddDimension, que tem os seguintes argumentos:

  • O índice do callback do tempo de viagem: transit_callback_index
  • Limite superior de folga (os tempos de espera nos locais): 30. Embora isso tenha sido definido como 0 no exemplo do CVRP, o VRPTW precisa permitir um tempo de espera positivo devido às restrições da janela de tempo.
  • Um limite superior para o tempo total do trajeto de cada veículo: 30
  • Uma variável booleana que especifica se a variável cumulativa está definida como zero no início do trajeto de cada veículo.
  • Nome da dimensão.

Em seguida, as linhas

Python

for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])

C++

for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}

Java

for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}

C#

for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}

exigem que um veículo visite o local durante a janela de tempo do local.

Definir parâmetros de pesquisa

O código a seguir define os parâmetros de pesquisa padrão e um método heurístico para encontrar a primeira solução:

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
    FirstSolutionStrategy::PATH_CHEAPEST_ARC);

Java

RoutingSearchParameters searchParameters =
    main.defaultRoutingSearchParameters()
        .toBuilder()
        .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
        .build();

C#

RoutingSearchParameters searchParameters =
    operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

Adicionar a impressora da solução

A função que exibe a solução é mostrada abaixo.

Python

def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective : " + solution.objectiveValue());
  // Inspect solution.
  RoutingDimension timeDimension = routing.getMutableDimension("Time");
  long totalTime = 0;
  for (int i = 0; i < data.vehicleNumber; ++i) {
    long index = routing.start(i);
    logger.info("Route for Vehicle " + i + ":");
    String route = "";
    while (!routing.isEnd(index)) {
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ") -> ";
      index = solution.value(routing.nextVar(index));
    }
    IntVar timeVar = timeDimension.cumulVar(index);
    route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
        + solution.max(timeVar) + ")";
    logger.info(route);
    logger.info("Time of the route: " + solution.min(timeVar) + "min");
    totalTime += solution.min(timeVar);
  }
  logger.info("Total time of all routes: " + totalTime + "min");
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                          in Assignment solution)
{
    Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

    // Inspect solution.
    RoutingDimension timeDimension = routing.GetMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.VehicleNumber; ++i)
    {
        Console.WriteLine("Route for Vehicle {0}:", i);
        var index = routing.Start(i);
        while (routing.IsEnd(index) == false)
        {
            var timeVar = timeDimension.CumulVar(index);
            Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                          solution.Max(timeVar));
            index = solution.Value(routing.NextVar(index));
        }
        var endTimeVar = timeDimension.CumulVar(index);
        Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                          solution.Max(endTimeVar));
        Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
        totalTime += solution.Min(endTimeVar);
    }
    Console.WriteLine("Total time of all routes: {0}min", totalTime);
}

A solução mostra as rotas do veículo e a janela de solução em cada local, conforme explicado na próxima seção.

Janelas de soluções

A janela de solução em um local é o intervalo de tempo em que um veículo precisa chegar para cumprir o cronograma.A janela de solução está contida e geralmente menor que a janela de tempo de restrição no local.

Na função da impressora de solução acima, a janela de solução é retornada por (assignment.Min(time_var), assignment.Max(time_var), em que time_var = time_dimension.CumulVar(index) é o tempo de viagem cumulativo do veículo no local.

Se os valores mínimo e máximo de time_var forem os mesmos, a janela de solução será um único ponto no tempo, o que significa que o veículo precisa sair do local assim que chegar. Por outro lado, se o mínimo for menor que o máximo, o veículo poderá aguardar antes de partir.

A seção Como executar o programa descreve as janelas de solução deste exemplo.

Resolução

A função principal deste exemplo é semelhante à do exemplo de TSP.

Python

solution = routing.SolveWithParameters(search_parameters)

C++

const Assignment* solution = routing.SolveWithParameters(searchParameters);

Java

Assignment solution = routing.solveWithParameters(searchParameters);

C#

Assignment solution = routing.SolveWithParameters(searchParameters);

Como executar o programa

Quando você executa o programa, ele mostra a seguinte saída:

Route for vehicle 0:
 0 Time(0,0) ->  9 Time(2,3) ->  14 Time(7,8) -> 16 Time(11,11) ->  0 Time(18,18)
Time of the route: 18min

Route for vehicle 1:
 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24)
Time of the route: 24min

Route for vehicle 2:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 3:
 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) ->
 0 Time(20,20)
Time of the route: 20min

Total time of all routes: 82min

Para cada local em um trajeto, Time(a,b) é a janela de solução: o veículo que visita o local precisa fazer isso nesse intervalo de tempo para cumprir a programação.

Por exemplo, dê uma olhada na seguinte parte do trajeto para o veículo 0.

0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)

No local 9, a janela de solução é Time(2,3), o que significa que o veículo precisa chegar entre 2 e 3. A janela de solução está contida na janela de tempo de restrição nesse local, (0,&nbsp;3), fornecida nos dados do problema. A janela de solução começa no tempo 2 porque leva duas unidades de tempo (a entrada 0, 9 da matriz de tempo) para ir do depósito até o local 9.

Por que o veículo pode sair do local 9 a qualquer momento entre 2 e 3? Isso acontece porque, como o tempo de viagem do local 9 para o local 14 é 3, se o veículo sair a qualquer momento antes do horário 3, ele chegará ao local 14 antes do horário 6, que é muito cedo para a visita. Portanto, o veículo precisa esperar em algum lugar, por exemplo, o motorista pode decidir esperar no local 9 até o horário 3 sem atrasar a conclusão do trajeto.

Talvez você tenha notado que algumas janelas de solução (por exemplo, nos locais 9 e 14) têm horários de início e término diferentes, mas outras (por exemplo, nas rotas 2 e 3) têm o mesmo horário de início e término. No primeiro caso, os veículos podem esperar até o fim da janela antes de partir, enquanto no segundo, precisam partir assim que chegarem.

Salvar as janelas de solução em uma lista ou matriz

A seção do TSP mostra como salvar as rotas em uma solução em uma lista ou matriz. Para uma VRPTW, você também pode salvar as janelas de solução. As funções abaixo salvam as janelas de solução em uma lista (Python) ou uma matriz (C++).

Python

def get_cumul_data(solution, routing, dimension):
  """Get cumulative data from a dimension and store it in an array."""
  # Returns an array cumul_data whose i,j entry contains the minimum and
  # maximum of CumulVar for the dimension at the jth node on route :
  # - cumul_data[i][j][0] is the minimum.
  # - cumul_data[i][j][1] is the maximum.

  cumul_data = []
  for route_nbr in range(routing.vehicles()):
    route_data = []
    index = routing.Start(route_nbr)
    dim_var = dimension.CumulVar(index)
    route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      dim_var = dimension.CumulVar(index)
      route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    cumul_data.append(route_data)
  return cumul_data

C++

std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData(
    const Assignment& solution, const RoutingModel& routing,
    const RoutingDimension& dimension) {
  // Returns an array cumul_data, whose i, j entry is a pair containing
  // the minimum and maximum of CumulVar for the dimension.:
  // - cumul_data[i][j].first is the minimum.
  // - cumul_data[i][j].second is the maximum.
  std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data(
      routing.vehicles());

  for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    IntVar* dim_var = dimension.CumulVar(index);
    cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                        solution.Max(dim_var));
    while (!routing.IsEnd(index)) {
      index = solution.Value(routing.NextVar(index));
      IntVar* dim_var = dimension.CumulVar(index);
      cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                          solution.Max(dim_var));
    }
  }
  return cumul_data;
}

As funções salvam os valores mínimo e máximo dos dados cumulativos para qualquer dimensão (não apenas tempo). No exemplo atual, esses valores são os limites inferior e superior da janela de solução, e a dimensão transmitida para a função é time_dimension.

As funções a seguir imprimem a solução das rotas e dos dados cumulativos.

Python

def print_solution(routes, cumul_data):
  """Print the solution."""
  total_time = 0
  route_str = ""
  for i, route in enumerate(routes):
    route_str += "Route " + str(i) + ":\n"
    start_time = cumul_data[i][0][0]
    end_time = cumul_data[i][0][1]
    route_str += (
        "  "
        + str(route[0])
        + " Time("
        + str(start_time)
        + ", "
        + str(end_time)
        + ")"
    )
    for j in range(1, len(route)):
      start_time = cumul_data[i][j][0]
      end_time = cumul_data[i][j][1]
      route_str += (
          " -> "
          + str(route[j])
          + " Time("
          + str(start_time)
          + ", "
          + str(end_time)
          + ")"
      )
    route_str += f"\n  Route time: {start_time}min\n\n"
    total_time += cumul_data[i][len(route) - 1][0]
  route_str += f"Total time: {total_time}min"
  print(route_str)

C++

void PrintSolution(
    const std::vector<std::vector<int>> routes,
    std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) {
  int64_t total_time{0};
  std::ostringstream route;
  for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
    route << "\nRoute " << vehicle_id << ": \n";

    route << "  " << routes[vehicle_id][0] << " Time("
          << cumul_data[vehicle_id][0].first << ", "
          << cumul_data[vehicle_id][0].second << ") ";
    for (int j = 1; j < routes[vehicle_id].size(); ++j) {
      route << "-> " << routes[vehicle_id][j] << " Time("
            << cumul_data[vehicle_id][j].first << ", "
            << cumul_data[vehicle_id][j].second << ") ";
    }
    route << "\n  Route time: "
          << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first
          << " minutes\n";

    total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first;
  }
  route << "\nTotal travel time: " << total_time << " minutes";
  LOG(INFO) << route.str();
}

Programas completos

Os programas completos para o problema de roteamento de veículos com janelas de tempo são mostrados abaixo.

Python

"""Vehicles Routing Problem (VRP) with Time Windows."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        30,  # allow waiting time
        30,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == data["depot"]:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    depot_idx = data["depot"]
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
        )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** VRPTW. */
public class VrpTimeWindows {
  private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName());
  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {16, 18}, // 3
        {10, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 4}, // 7
        {5, 10}, // 8
        {0, 3}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 8}, // 14
        {10, 15}, // 15
        {11, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}
// [END_program_part1]

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Time Windows.
/// </summary>
public class VrpTimeWindows
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 16, 18 }, // 3
            { 10, 13 }, // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 4 },   // 7
            { 5, 10 },  // 8
            { 0, 3 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 8 },   // 14
            { 10, 15 }, // 15
            { 11, 15 }, // 16
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to time
                                                                       // matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Time constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}