Résoudre un problème de CP

La section précédente vous a montré comment trouver toutes les solutions à un problème de CP. Ensuite, nous vous montrerons comment trouver une solution optimale. À titre d'exemple, nous allons résoudre le problème d'optimisation suivant.

Maximiser 2x + 2y + 3z soumis aux contraintes suivantes:
x + 72 y + 32 z25
3x - 5y + 7z45
5x + 2y - 6z37
x, y, z0
x, y, z entiers

Afin d'augmenter la vitesse de calcul, le résolveur CP-SAT utilise le entiers. Cela signifie que toutes les contraintes et l'objectif doivent avoir des nombres entiers coefficients de détermination. Dans l'exemple ci-dessus, la première contrainte ne respecte pas ce . Pour résoudre le problème, vous devez d'abord transformer la contrainte en en le multipliant par un entier suffisamment grand pour convertir tous les coefficients en nombres entiers. Ce processus est illustré dans la section Contraintes ci-dessous.

Solution utilisant la solution CP-SAT

Les sections suivantes présentent un programme Python qui résout le problème en utilisant le résolveur CP-SAT.

Importer les bibliothèques

Le code suivant importe la bibliothèque requise.

Python

from ortools.sat.python import cp_model

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

Java

import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

Déclarer le modèle

Le code suivant déclare le modèle pour le problème.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Créer les variables

Le code suivant crée les variables correspondant au problème.

Python

var_upper_bound = max(50, 45, 37)
x = model.new_int_var(0, var_upper_bound, "x")
y = model.new_int_var(0, var_upper_bound, "y")
z = model.new_int_var(0, var_upper_bound, "z")

C++

int64_t var_upper_bound = std::max({50, 45, 37});
const Domain domain(0, var_upper_bound);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");

Java

int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

IntVar x = model.newIntVar(0, varUpperBound, "x");
IntVar y = model.newIntVar(0, varUpperBound, "y");
IntVar z = model.newIntVar(0, varUpperBound, "z");

C#

int varUpperBound = new int[] { 50, 45, 37 }.Max();

IntVar x = model.NewIntVar(0, varUpperBound, "x");
IntVar y = model.NewIntVar(0, varUpperBound, "y");
IntVar z = model.NewIntVar(0, varUpperBound, "z");

Définir les contraintes

Depuis la première contrainte,

x + 72 y + 32 z25

comporte des coefficients non entiers, vous devez d'abord multiplier la contrainte entière par une un nombre entier suffisamment grand pour convertir les coefficients en entiers. Dans ce cas, , vous pouvez multiplier par 2 pour obtenir la nouvelle contrainte.

2x + 7y + 3z50

Cela ne change pas le problème, puisque la contrainte d'origine a exactement le avec les mêmes solutions que la contrainte transformée.

Le code suivant définit les trois contraintes linéaires pour le problème:

Python

model.add(2 * x + 7 * y + 3 * z <= 50)
model.add(3 * x - 5 * y + 7 * z <= 45)
model.add(5 * x + 2 * y - 6 * z <= 37)

C++

cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

Java

model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

C#

model.Add(2 * x + 7 * y + 3 * z <= 50);
model.Add(3 * x - 5 * y + 7 * z <= 45);
model.Add(5 * x + 2 * y - 6 * z <= 37);

Définir la fonction objectif

Le code suivant définit la fonction objectif du problème et déclare qu'il s'agit d'un problème d'optimisation:

Python

model.maximize(2 * x + 2 * y + 3 * z)

C++

cp_model.Maximize(2 * x + 2 * y + 3 * z);

Java

model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

C#

model.Maximize(2 * x + 2 * y + 3 * z);

Appeler le résolveur

Le code suivant appelle le résolveur.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

Afficher la solution

Le code suivant affiche les résultats.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Maximum of objective function: {solver.objective_value}\n")
    print(f"x = {solver.value(x)}")
    print(f"y = {solver.value(y)}")
    print(f"z = {solver.value(z)}")
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  // Get the value of x in the solution.
  LOG(INFO) << "Maximum of objective function: "
            << response.objective_value();
  LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
  LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
  LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
  System.out.println("x = " + solver.value(x));
  System.out.println("y = " + solver.value(y));
  System.out.println("z = " + solver.value(z));
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
    Console.WriteLine("x = " + solver.Value(x));
    Console.WriteLine("y = " + solver.Value(y));
    Console.WriteLine("z = " + solver.Value(z));
}
else
{
    Console.WriteLine("No solution found.");
}

Le résultat est illustré ci-dessous:

Maximum of objective function: 35

x value:  7
y value:  3
z value:  5

L'ensemble du programme

L'intégralité du programme est présentée ci-dessous.

Python

"""Simple solve."""
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal CP-SAT example to showcase calling the solver."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    var_upper_bound = max(50, 45, 37)
    x = model.new_int_var(0, var_upper_bound, "x")
    y = model.new_int_var(0, var_upper_bound, "y")
    z = model.new_int_var(0, var_upper_bound, "z")

    # Creates the constraints.
    model.add(2 * x + 7 * y + 3 * z <= 50)
    model.add(3 * x - 5 * y + 7 * z <= 45)
    model.add(5 * x + 2 * y - 6 * z <= 37)

    model.maximize(2 * x + 2 * y + 3 * z)

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Maximum of objective function: {solver.objective_value}\n")
        print(f"x = {solver.value(x)}")
        print(f"y = {solver.value(y)}")
        print(f"z = {solver.value(z)}")
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")


if __name__ == "__main__":
    main()

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CpSatExample() {
  CpModelBuilder cp_model;

  int64_t var_upper_bound = std::max({50, 45, 37});
  const Domain domain(0, var_upper_bound);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
  cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
  cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

  cp_model.Maximize(2 * x + 2 * y + 3 * z);

  // Solving part.
  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    // Get the value of x in the solution.
    LOG(INFO) << "Maximum of objective function: "
              << response.objective_value();
    LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
    LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
    LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::CpSatExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Minimal CP-SAT example to showcase calling the solver. */
public final class CpSatExample {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

    IntVar x = model.newIntVar(0, varUpperBound, "x");
    IntVar y = model.newIntVar(0, varUpperBound, "y");
    IntVar z = model.newIntVar(0, varUpperBound, "z");

    // Create the constraints.
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

    model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
      System.out.println("x = " + solver.value(x));
      System.out.println("y = " + solver.value(y));
      System.out.println("z = " + solver.value(z));
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private CpSatExample() {}
}

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

public class CpSatExample
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int varUpperBound = new int[] { 50, 45, 37 }.Max();

        IntVar x = model.NewIntVar(0, varUpperBound, "x");
        IntVar y = model.NewIntVar(0, varUpperBound, "y");
        IntVar z = model.NewIntVar(0, varUpperBound, "z");

        // Creates the constraints.
        model.Add(2 * x + 7 * y + 3 * z <= 50);
        model.Add(3 * x - 5 * y + 7 * z <= 45);
        model.Add(5 * x + 2 * y - 6 * z <= 37);

        model.Maximize(2 * x + 2 * y + 3 * z);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
            Console.WriteLine("x = " + solver.Value(x));
            Console.WriteLine("y = " + solver.Value(y));
            Console.WriteLine("z = " + solver.Value(z));
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}