בקטע הקודם למדנו איך למצוא את כל הפתרונות לבעיה ב-CP. בשלב הבא, נראה איך למצוא פתרון אופטימלי. לדוגמה, נפתור את שבמעקב שלך.
- מקסימום 2x + 2y + 3z בכפוף למגבלות הבאות:
-
x + 7⁄2 y + 3⁄2 z ≤ 25 3x – 5y + 7z ≤ 45 5x + 2y - 6z ≤ 37 x, y, z ≥ 0 x, y, z מספרים שלמים
כדי להגביר את מהירות החישוב, פותר ה-CP-SAT עובד שלמים. כלומר, כל האילוצים והיעד צריך להיות מספר שלם מקדמים. בדוגמה שלמעלה, האילוץ הראשון לא עומד בקריטריונים תנאי. כדי לפתור את הבעיה, צריך קודם לשנות את האילוץ מכפילים אותו במספר שלם גדול מספיק כדי להמיר את כל המקדמים למספרים שלמים. אפשר לראות זאת בקטע מגבלות שבהמשך.
פתרון באמצעות פותר CP-SAT
בקטעים הבאים מוצגת תוכנת Python שפותרת את הבעיה באמצעות פותר ה-CP-SAT.
ייבוא הספריות
הקוד הבא מייבא את הספרייה הנדרשת.
Python
from ortools.sat.python import cp_model
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
C#
using System; using System.Linq; using Google.OrTools.Sat;
להצהיר על המודל
הקוד הבא מציין את המודל לבעיה.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
יצירת המשתנים
הקוד הבא יוצר את המשתנים שמתאימים לבעיה.
Python
var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z")
C++
int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z");
C#
int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z");
הגדרת המגבלות
מאז האילוץ הראשון,
x + 7⁄2 y + 3⁄2 z | ≤ | 25 |
יש מקדמים לא שלמים, קודם צריך להכפיל את כל האילוץ מספר שלם גדול מספיק כדי להמיר את המקדמים למספרים שלמים. במקרה הזה , אפשר להכפיל ב-2, וכתוצאה מכך יתקבל האילוץ החדש
2x + 7y + 3z | ≤ | 50 |
זה לא משנה את הבעיה, מכיוון שהאילוץ המקורי כולל בדיוק אותם פתרונות כמו האילוץ שהשתנה.
הקוד הבא מגדיר את שלוש המגבלות הלינאריות לבעיה:
Python
model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37)
C++
cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);
Java
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);
C#
model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37);
מגדירים את פונקציית היעד
הקוד הבא מגדיר את פונקציית היעד של הבעיה ומצהיר על יהווה בעיית מקסום:
Python
model.maximize(2 * x + 2 * y + 3 * z)
C++
cp_model.Maximize(2 * x + 2 * y + 3 * z);
Java
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));
C#
model.Maximize(2 * x + 2 * y + 3 * z);
התקשרות לפותר
הקוד הבא מפעיל את הפותר.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
הצגת הפתרון
הקוד הבא מציג את התוצאות.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
הפלט אמור להיראות כך:
Maximum of objective function: 35 x value: 7 y value: 3 z value: 5
התוכנית כולה
התוכנית כולה מוצגת למטה.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def main() -> None: """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z") # Creates the constraints. model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37) model.maximize(2 * x + 2 * y + 3 * z) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") if __name__ == "__main__": main()
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CpSatExample() { CpModelBuilder cp_model; int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37); cp_model.Maximize(2 * x + 2 * y + 3 * z); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::CpSatExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Minimal CP-SAT example to showcase calling the solver. */ public final class CpSatExample { public static void main(String[] args) { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z"); // Create the constraints. model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37); model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3})); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private CpSatExample() {} }
C#
using System; using System.Linq; using Google.OrTools.Sat; public class CpSatExample { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z"); // Creates the constraints. model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37); model.Maximize(2 * x + 2 * y + 3 * z); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }