حل مشكلة في حافظات متعددة

يعرض هذا القسم كيفية حلّ مشكلة حقيبة الظهر المتعدّدة. باستخدام كل من أداة حل MIP وأداة حل CP-SAT. في هذه الحالة، من الشائع الإشارة إلى الحاويات باعتبارها bins، بدلاً من من الحقائب العادية.

يوضح المثال التالي كيفية العثور على الطريقة المثلى لتغليف العناصر في خمس سلال.

مثال

كما في المثال السابق، ستبدأ بـ مجموعة من العناصر ذات الأوزان والقيم المختلفة. تكمن المشكلة في تجميع مجموعة فرعية من العناصر في خمس سلال، يبلغ الحد الأقصى لكل منها 100 سلال، بحيث يكون إجمالي القيمة المعبأة حدًا أقصى.

تعرض الأقسام التالية أقسامًا من البرامج التي تحل هذه المشكلة. للاطلاع على البرامج الكاملة، راجع البرامج المكتملة.

حل MIP

توضح الأقسام التالية كيفية حل المشكلة باستخدام برنامج تضمين MPSolver:

استيراد المكتبات

يستورد الرمز التالي المكتبات المطلوبة.

Python

from ortools.linear_solver import pywraplp

C++‎

#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

لغة Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

#C

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

إنشاء البيانات

ينشئ التعليمة البرمجية التالية البيانات للمشكلة.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
data["num_items"] = len(data["weights"])
data["all_items"] = range(data["num_items"])

data["bin_capacities"] = [100, 100, 100, 100, 100]
data["num_bins"] = len(data["bin_capacities"])
data["all_bins"] = range(data["num_bins"])

C++‎

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = weights.size();
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = bin_capacities.size();
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

لغة Java

final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final double[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

#C

double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

double[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

وتشمل البيانات ما يلي:

  • weights: متجه يحتوي على أوزان العناصر.
  • values: متجه يحتوي على قيم العناصر.
  • capacities: متجه يحتوي على سعات السلال.

في هذا المثال، كل السلال لها السعة نفسها، ولكن يجب ألا يكون ذلك صحيحًا بشكل عام.

تعريف أداة حلّ MIP

يكشف الرمز التالي عن أداة حلّ MIP.

Python

solver = pywraplp.Solver.CreateSolver("SCIP")
if solver is None:
    print("SCIP solver unavailable.")
    return

C++‎

  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

لغة Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

#C

// Create the linear solver with the SCIP backend.
Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

إنشاء المتغيّرات

تُنشئ التعليمة البرمجية التالية متغيرات المشكلة.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data["all_items"]:
    for b in data["all_bins"]:
        x[i, b] = solver.BoolVar(f"x_{i}_{b}")

C++‎

// x[i][b] = 1 if item i is packed in bin b.
std::vector<std::vector<const MPVariable*>> x(
    num_items, std::vector<const MPVariable*>(num_bins));
for (int i : all_items) {
  for (int b : all_bins) {
    x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
  }
}

لغة Java

MPVariable[][] x = new MPVariable[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
  }
}

#C

Variable[,] x = new Variable[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
    }
}

كل x[(i, j)] هو متغير من 0 إلى 1، حيث يمثل i عنصرًا وj هو سلة. ضِمن الحلّ، ستكون قيمة الحقل "x[(i, j)]" هي 1 إذا تم وضع العنصر "i" في السلة "j"، والقيمة 0. وإلا.

تحديد القيود

تحدد التعليمة البرمجية التالية القيود المفروضة على المشكلة:

Python

# Each item is assigned to at most one bin.
for i in data["all_items"]:
    solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

# The amount packed in each bin cannot exceed its capacity.
for b in data["all_bins"]:
    solver.Add(
        sum(x[i, b] * data["weights"][i] for i in data["all_items"])
        <= data["bin_capacities"][b]
    )

C++‎

// Each item is assigned to at most one bin.
for (int i : all_items) {
  LinearExpr sum;
  for (int b : all_bins) {
    sum += x[i][b];
  }
  solver->MakeRowConstraint(sum <= 1.0);
}
// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += LinearExpr(x[i][b]) * weights[i];
  }
  solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
}

لغة Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int b : allBins) {
    constraint.setCoefficient(x[i][b], 1);
  }
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
  for (int i : allItems) {
    constraint.setCoefficient(x[i][b], weights[i]);
  }
}

#C

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int b in allBins)
    {
        constraint.SetCoefficient(x[i, b], 1);
    }
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
    foreach (int i in allItems)
    {
        constraint.SetCoefficient(x[i, b], Weights[i]);
    }
}

في ما يلي القيود:

  • لا يمكن وضع كل سلعة في سلة واحدة كحدّ أقصى. يتم تعيين هذا القيد من خلال المطلوب أن يكون مجموع x[i, j] على كل السلال j أقل من أو مساويًا إلى 1.
  • يجب ألا يتجاوز الوزن الإجمالي المعبأ في كل سلة سعتها. هذا النمط من خلال طلب مجموع أوزان العناصر الموضوعة في السلة j أقل من سعة السلة أو مساوية لها.

تحديد الهدف

تحدد التعليمة البرمجية التالية الدالة الموضوعية للمشكلة، وهي القيمة الإجمالية للعناصر المعبأة.

Python

# Maximize total value of packed items.
objective = solver.Objective()
for i in data["all_items"]:
    for b in data["all_bins"]:
        objective.SetCoefficient(x[i, b], data["values"][i])
objective.SetMaximization()

C++‎

// Maximize total value of packed items.
MPObjective* const objective = solver->MutableObjective();
LinearExpr objective_value;
for (int i : all_items) {
  for (int b : all_bins) {
    objective_value += LinearExpr(x[i][b]) * values[i];
  }
}
objective->MaximizeLinearExpr(objective_value);

لغة Java

// Maximize total value of packed items.
MPObjective objective = solver.objective();
for (int i : allItems) {
  for (int b : allBins) {
    objective.setCoefficient(x[i][b], values[i]);
  }
}
objective.setMaximization();

#C

Objective objective = solver.Objective();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        objective.SetCoefficient(x[i, b], Values[i]);
    }
}
objective.SetMaximization();

يُرجى العلم أنّ x[i, j] * data['values'][i] يضيف قيمة العنصر i إلى والهدف إذا تم وضع العنصر في السلة j. إذا لم يتم وضع i في أي سلة، والقيمة لا تساهم في الهدف.

استدعاء أداة الحلّ

يستدعي الرمز التالي أداة الحل.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++‎

const MPSolver::ResultStatus result_status = solver->Solve();

لغة Java

final MPSolver.ResultStatus status = solver.solve();

#C

Solver.ResultStatus resultStatus = solver.Solve();

تطبع التعليمة البرمجية التالية حل المشكلة.

Python

if status == pywraplp.Solver.OPTIMAL:
    print(f"Total packed value: {objective.Value()}")
    total_weight = 0
    for b in data["all_bins"]:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in data["all_items"]:
            if x[i, b].solution_value() > 0:
                print(
                    f"Item {i} weight: {data['weights'][i]} value:"
                    f" {data['values'][i]}"
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++‎

if (result_status == MPSolver::OPTIMAL) {
  LOG(INFO) << "Total packed value: " << objective->Value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      if (x[i][b]->solution_value() > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

لغة Java

// Check that the problem has an optimal solution.
if (status == MPSolver.ResultStatus.OPTIMAL) {
  System.out.println("Total packed value: " + objective.value());
  double totalWeight = 0;
  for (int b : allBins) {
    double binWeight = 0;
    double binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (x[i][b].solutionValue() == 1) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

#C

// Check that the problem has an optimal solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL)
{
    Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine("Bin " + b);
        foreach (int i in allItems)
        {
            if (x[i, b].SolutionValue() == 1)
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("The problem does not have an optimal solution!");
}

يعرض الرمز داخل كل سلة السلع التي تم وضعها في السلة، بالإضافة إلى القيمة الإجمالية والوزن. تعرض التعليمة البرمجية أيضًا القيمة الإجمالية الإجمالية وزن العناصر المعبأة.

عند تشغيل البرنامج، يعرض الناتج التالي.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

إكمال البرامج

في ما يلي البرامج الكاملة لأكياس ورقية متعددة.

Python

"""Solve a multiple knapsack problem using a MIP solver."""
from ortools.linear_solver import pywraplp


def main():
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    data["num_items"] = len(data["weights"])
    data["all_items"] = range(data["num_items"])

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    data["num_bins"] = len(data["bin_capacities"])
    data["all_bins"] = range(data["num_bins"])

    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")
    if solver is None:
        print("SCIP solver unavailable.")
        return

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in data["all_items"]:
        for b in data["all_bins"]:
            x[i, b] = solver.BoolVar(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in data["all_items"]:
        solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)

    # The amount packed in each bin cannot exceed its capacity.
    for b in data["all_bins"]:
        solver.Add(
            sum(x[i, b] * data["weights"][i] for i in data["all_items"])
            <= data["bin_capacities"][b]
        )

    # Objective.
    # Maximize total value of packed items.
    objective = solver.Objective()
    for i in data["all_items"]:
        for b in data["all_bins"]:
            objective.SetCoefficient(x[i, b], data["values"][i])
    objective.SetMaximization()

    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    if status == pywraplp.Solver.OPTIMAL:
        print(f"Total packed value: {objective.Value()}")
        total_weight = 0
        for b in data["all_bins"]:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in data["all_items"]:
                if x[i, b].solution_value() > 0:
                    print(
                        f"Item {i} weight: {data['weights'][i]} value:"
                        f" {data['values'][i]}"
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++‎

// Solve a multiple knapsack problem using a MIP solver.
#include <iostream>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {

void MultipleKnapsackMip() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = weights.size();
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = bin_capacities.size();
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables.
  // x[i][b] = 1 if item i is packed in bin b.
  std::vector<std::vector<const MPVariable*>> x(
      num_items, std::vector<const MPVariable*>(num_bins));
  for (int i : all_items) {
    for (int b : all_bins) {
      x[i][b] = solver->MakeBoolVar(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    LinearExpr sum;
    for (int b : all_bins) {
      sum += x[i][b];
    }
    solver->MakeRowConstraint(sum <= 1.0);
  }
  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += LinearExpr(x[i][b]) * weights[i];
    }
    solver->MakeRowConstraint(bin_weight <= bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  MPObjective* const objective = solver->MutableObjective();
  LinearExpr objective_value;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective_value += LinearExpr(x[i][b]) * values[i];
    }
  }
  objective->MaximizeLinearExpr(objective_value);

  const MPSolver::ResultStatus result_status = solver->Solve();

  if (result_status == MPSolver::OPTIMAL) {
    LOG(INFO) << "Total packed value: " << objective->Value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        if (x[i][b]->solution_value() > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::MultipleKnapsackMip();
  return EXIT_SUCCESS;
}

لغة Java

// Solve a multiple knapsack problem using a MIP solver.
package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** Multiple knapsack problem. */
public class MultipleKnapsackMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final double[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final double[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final double[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables.
    MPVariable[][] x = new MPVariable[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = solver.makeBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int b : allBins) {
        constraint.setCoefficient(x[i][b], 1);
      }
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      MPConstraint constraint = solver.makeConstraint(0, binCapacities[b], "");
      for (int i : allItems) {
        constraint.setCoefficient(x[i][b], weights[i]);
      }
    }

    // Objective.
    // Maximize total value of packed items.
    MPObjective objective = solver.objective();
    for (int i : allItems) {
      for (int b : allBins) {
        objective.setCoefficient(x[i][b], values[i]);
      }
    }
    objective.setMaximization();

    final MPSolver.ResultStatus status = solver.solve();

    // Check that the problem has an optimal solution.
    if (status == MPSolver.ResultStatus.OPTIMAL) {
      System.out.println("Total packed value: " + objective.value());
      double totalWeight = 0;
      for (int b : allBins) {
        double binWeight = 0;
        double binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (x[i][b].solutionValue() == 1) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackMip() {}
}

#C

// Solve a multiple knapsack problem using a MIP solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class MultipleKnapsackMip
{
    public static void Main()
    {
        // Instantiate the data problem.
        double[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        double[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        double[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Create the linear solver with the SCIP backend.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        Variable[,] x = new Variable[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = solver.MakeBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int b in allBins)
            {
                constraint.SetCoefficient(x[i, b], 1);
            }
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            Constraint constraint = solver.MakeConstraint(0, BinCapacities[b], "");
            foreach (int i in allItems)
            {
                constraint.SetCoefficient(x[i, b], Weights[i]);
            }
        }

        // Objective.
        Objective objective = solver.Objective();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                objective.SetCoefficient(x[i, b], Values[i]);
            }
        }
        objective.SetMaximization();

        Solver.ResultStatus resultStatus = solver.Solve();

        // Check that the problem has an optimal solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL)
        {
            Console.WriteLine($"Total packed value: {solver.Objective().Value()}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine("Bin " + b);
                foreach (int i in allItems)
                {
                    if (x[i, b].SolutionValue() == 1)
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("The problem does not have an optimal solution!");
        }
    }
}

حلّ CP SAT

تصف الأقسام التالية كيفية حل المسألة باستخدام أداة حلّ CP-SAT.

استيراد المكتبات

يستورد الرمز التالي المكتبات المطلوبة.

Python

from ortools.sat.python import cp_model

C++‎

#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

لغة Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

#C

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}

تعريف النموذج

يوضح الرمز التالي نموذج CP-SAT.

Python

model = cp_model.CpModel()

C++‎

CpModelBuilder cp_model;

لغة Java

CpModel model = new CpModel();

#C

CpModel model = new CpModel();

إنشاء البيانات

يقوم الكود التالي بإعداد البيانات للمشكلة.

Python

data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
num_items = len(data["weights"])
all_items = range(num_items)

data["bin_capacities"] = [100, 100, 100, 100, 100]
num_bins = len(data["bin_capacities"])
all_bins = range(num_bins)

C++‎

const std::vector<int> weights = {
    {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
const std::vector<int> values = {
    {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
const int num_items = static_cast<int>(weights.size());
std::vector<int> all_items(num_items);
std::iota(all_items.begin(), all_items.end(), 0);

const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
const int num_bins = static_cast<int>(bin_capacities.size());
std::vector<int> all_bins(num_bins);
std::iota(all_bins.begin(), all_bins.end(), 0);

لغة Java

final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
final int numItems = weights.length;
final int[] allItems = IntStream.range(0, numItems).toArray();

final int[] binCapacities = {100, 100, 100, 100, 100};
final int numBins = binCapacities.length;
final int[] allBins = IntStream.range(0, numBins).toArray();

#C

int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
int NumItems = Weights.Length;
int[] allItems = Enumerable.Range(0, NumItems).ToArray();

int[] BinCapacities = { 100, 100, 100, 100, 100 };
int NumBins = BinCapacities.Length;
int[] allBins = Enumerable.Range(0, NumBins).ToArray();

تتجاوب الصفيفة costs مع جدول التكاليف لتعيين عاملين للمهام، كما هو موضح أعلاه.

إنشاء المتغيّرات

تُنشئ التعليمة البرمجية التالية متغيرات الأعداد الصحيحة الثنائية للمشكلة.

Python

# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in all_items:
    for b in all_bins:
        x[i, b] = model.new_bool_var(f"x_{i}_{b}")

C++‎

// x[i, b] = 1 if item i is packed in bin b.
std::map<std::tuple<int, int>, BoolVar> x;
for (int i : all_items) {
  for (int b : all_bins) {
    auto key = std::make_tuple(i, b);
    x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
  }
}

لغة Java

Literal[][] x = new Literal[numItems][numBins];
for (int i : allItems) {
  for (int b : allBins) {
    x[i][b] = model.newBoolVar("x_" + i + "_" + b);
  }
}

#C

ILiteral[,] x = new ILiteral[NumItems, NumBins];
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        x[i, b] = model.NewBoolVar($"x_{i}_{b}");
    }
}

وضع القيود

تضع التعليمة البرمجية التالية قيودًا للمشكلة.

Python

# Each item is assigned to at most one bin.
for i in all_items:
    model.add_at_most_one(x[i, b] for b in all_bins)

# The amount packed in each bin cannot exceed its capacity.
for b in all_bins:
    model.add(
        sum(x[i, b] * data["weights"][i] for i in all_items)
        <= data["bin_capacities"][b]
    )

C++‎

// Each item is assigned to at most one bin.
for (int i : all_items) {
  std::vector<BoolVar> copies;
  for (int b : all_bins) {
    copies.push_back(x[std::make_tuple(i, b)]);
  }
  cp_model.AddAtMostOne(copies);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : all_bins) {
  LinearExpr bin_weight;
  for (int i : all_items) {
    bin_weight += x[std::make_tuple(i, b)] * weights[i];
  }
  cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
}

لغة Java

// Each item is assigned to at most one bin.
for (int i : allItems) {
  List<Literal> bins = new ArrayList<>();
  for (int b : allBins) {
    bins.add(x[i][b]);
  }
  model.addAtMostOne(bins);
}

// The amount packed in each bin cannot exceed its capacity.
for (int b : allBins) {
  LinearExprBuilder load = LinearExpr.newBuilder();
  for (int i : allItems) {
    load.addTerm(x[i][b], weights[i]);
  }
  model.addLessOrEqual(load, binCapacities[b]);
}

#C

// Each item is assigned to at most one bin.
foreach (int i in allItems)
{
    List<ILiteral> literals = new List<ILiteral>();
    foreach (int b in allBins)
    {
        literals.Add(x[i, b]);
    }
    model.AddAtMostOne(literals);
}

// The amount packed in each bin cannot exceed its capacity.
foreach (int b in allBins)
{
    List<ILiteral> items = new List<ILiteral>();
    foreach (int i in allItems)
    {
        items.Add(x[i, b]);
    }
    model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
}

إنشاء الدالة الموضوعية

تنشئ التعليمة البرمجية التالية الدالة الموضوعية للمشكلة.

Python

# maximize total value of packed items.
objective = []
for i in all_items:
    for b in all_bins:
        objective.append(cp_model.LinearExpr.term(x[i, b], data["values"][i]))
model.maximize(cp_model.LinearExpr.sum(objective))

C++‎

// Maximize total value of packed items.
LinearExpr objective;
for (int i : all_items) {
  for (int b : all_bins) {
    objective += x[std::make_tuple(i, b)] * values[i];
  }
}
cp_model.Maximize(objective);

لغة Java

// Maximize total value of packed items.
LinearExprBuilder obj = LinearExpr.newBuilder();
for (int i : allItems) {
  for (int b : allBins) {
    obj.addTerm(x[i][b], values[i]);
  }
}
model.maximize(obj);

#C

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int i in allItems)
{
    foreach (int b in allBins)
    {
        obj.AddTerm(x[i, b], Values[i]);
    }
}
model.Maximize(obj);

قيمة الدالة الموضوعية هي التكلفة الإجمالية على جميع المتغيرات التي تم تعيينها القيمة 1 في أداة الحل.

استدعاء أداة الحلّ

يستدعي الرمز التالي أداة الحل.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++‎

const CpSolverResponse response = Solve(cp_model.Build());

لغة Java

CpSolver solver = new CpSolver();
final CpSolverStatus status = solver.solve(model);

#C

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

تطبع التعليمة البرمجية التالية حل المشكلة.

Python

if status == cp_model.OPTIMAL:
    print(f"Total packed value: {solver.objective_value}")
    total_weight = 0
    for b in all_bins:
        print(f"Bin {b}")
        bin_weight = 0
        bin_value = 0
        for i in all_items:
            if solver.value(x[i, b]) > 0:
                print(
                    f'Item:{i} weight:{data["weights"][i]} value:{data["values"][i]}'
                )
                bin_weight += data["weights"][i]
                bin_value += data["values"][i]
        print(f"Packed bin weight: {bin_weight}")
        print(f"Packed bin value: {bin_value}\n")
        total_weight += bin_weight
    print(f"Total packed weight: {total_weight}")
else:
    print("The problem does not have an optimal solution.")

C++‎

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  LOG(INFO) << "Total packed value: " << response.objective_value();
  double total_weight = 0.0;
  for (int b : all_bins) {
    LOG(INFO) << "Bin " << b;
    double bin_weight = 0.0;
    double bin_value = 0.0;
    for (int i : all_items) {
      auto key = std::make_tuple(i, b);
      if (SolutionIntegerValue(response, x[key]) > 0) {
        LOG(INFO) << "Item " << i << " weight: " << weights[i]
                  << " value: " << values[i];
        bin_weight += weights[i];
        bin_value += values[i];
      }
    }
    LOG(INFO) << "Packed bin weight: " << bin_weight;
    LOG(INFO) << "Packed bin value: " << bin_value;
    total_weight += bin_weight;
  }
  LOG(INFO) << "Total packed weight: " << total_weight;
} else {
  LOG(INFO) << "The problem does not have an optimal solution.";
}

لغة Java

// Check that the problem has an optimal solution.
if (status == CpSolverStatus.OPTIMAL) {
  System.out.println("Total packed value: " + solver.objectiveValue());
  long totalWeight = 0;
  for (int b : allBins) {
    long binWeight = 0;
    long binValue = 0;
    System.out.println("Bin " + b);
    for (int i : allItems) {
      if (solver.booleanValue(x[i][b])) {
        System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
        binWeight += weights[i];
        binValue += values[i];
      }
    }
    System.out.println("Packed bin weight: " + binWeight);
    System.out.println("Packed bin value: " + binValue);
    totalWeight += binWeight;
  }
  System.out.println("Total packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

#C

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
    double TotalWeight = 0.0;
    foreach (int b in allBins)
    {
        double BinWeight = 0.0;
        double BinValue = 0.0;
        Console.WriteLine($"Bin {b}");
        foreach (int i in allItems)
        {
            if (solver.BooleanValue(x[i, b]))
            {
                Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                BinWeight += Weights[i];
                BinValue += Values[i];
            }
        }
        Console.WriteLine("Packed bin weight: " + BinWeight);
        Console.WriteLine("Packed bin value: " + BinValue);
        TotalWeight += BinWeight;
    }
    Console.WriteLine("Total packed weight: " + TotalWeight);
}
else
{
    Console.WriteLine("No solution found.");
}

في ما يلي مخرجات البرنامج.

Total packed value: 395.0
Bin  0

Item 3 - weight: 36  value: 50
Item 13 - weight: 36  value: 30
Packed bin weight: 72
Packed bin value: 80

Bin  1

Item 5 - weight: 48  value: 30
Item 7 - weight: 42  value: 40
Packed bin weight: 90
Packed bin value: 70

Bin  2

Item 1 - weight: 30  value: 30
Item 10 - weight: 30  value: 45
Item 14 - weight: 36  value: 25
Packed bin weight: 96
Packed bin value: 100

Bin  3

Item 2 - weight: 42  value: 25
Item 12 - weight: 42  value: 20
Packed bin weight: 84
Packed bin value: 45

Bin  4

Item 4 - weight: 36  value: 35
Item 8 - weight: 36  value: 30
Item 9 - weight: 24  value: 35
Packed bin weight: 96
Packed bin value: 100

Total packed weight: 438

إكمال البرامج

في ما يلي البرامج الكاملة لحل CP-SAT.

Python

"""Solves a multiple knapsack problem using the CP-SAT solver."""
from ortools.sat.python import cp_model


def main() -> None:
    data = {}
    data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    assert len(data["weights"]) == len(data["values"])
    num_items = len(data["weights"])
    all_items = range(num_items)

    data["bin_capacities"] = [100, 100, 100, 100, 100]
    num_bins = len(data["bin_capacities"])
    all_bins = range(num_bins)

    model = cp_model.CpModel()

    # Variables.
    # x[i, b] = 1 if item i is packed in bin b.
    x = {}
    for i in all_items:
        for b in all_bins:
            x[i, b] = model.new_bool_var(f"x_{i}_{b}")

    # Constraints.
    # Each item is assigned to at most one bin.
    for i in all_items:
        model.add_at_most_one(x[i, b] for b in all_bins)

    # The amount packed in each bin cannot exceed its capacity.
    for b in all_bins:
        model.add(
            sum(x[i, b] * data["weights"][i] for i in all_items)
            <= data["bin_capacities"][b]
        )

    # Objective.
    # maximize total value of packed items.
    objective = []
    for i in all_items:
        for b in all_bins:
            objective.append(cp_model.LinearExpr.term(x[i, b], data["values"][i]))
    model.maximize(cp_model.LinearExpr.sum(objective))

    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL:
        print(f"Total packed value: {solver.objective_value}")
        total_weight = 0
        for b in all_bins:
            print(f"Bin {b}")
            bin_weight = 0
            bin_value = 0
            for i in all_items:
                if solver.value(x[i, b]) > 0:
                    print(
                        f'Item:{i} weight:{data["weights"][i]} value:{data["values"][i]}'
                    )
                    bin_weight += data["weights"][i]
                    bin_value += data["values"][i]
            print(f"Packed bin weight: {bin_weight}")
            print(f"Packed bin value: {bin_value}\n")
            total_weight += bin_weight
        print(f"Total packed weight: {total_weight}")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()

C++‎

// Solves a multiple knapsack problem using the CP-SAT solver.
#include <stdlib.h>

#include <map>
#include <numeric>
#include <tuple>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void MultipleKnapsackSat() {
  const std::vector<int> weights = {
      {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36}};
  const std::vector<int> values = {
      {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25}};
  const int num_items = static_cast<int>(weights.size());
  std::vector<int> all_items(num_items);
  std::iota(all_items.begin(), all_items.end(), 0);

  const std::vector<int> bin_capacities = {{100, 100, 100, 100, 100}};
  const int num_bins = static_cast<int>(bin_capacities.size());
  std::vector<int> all_bins(num_bins);
  std::iota(all_bins.begin(), all_bins.end(), 0);

  CpModelBuilder cp_model;

  // Variables.
  // x[i, b] = 1 if item i is packed in bin b.
  std::map<std::tuple<int, int>, BoolVar> x;
  for (int i : all_items) {
    for (int b : all_bins) {
      auto key = std::make_tuple(i, b);
      x[key] = cp_model.NewBoolVar().WithName(absl::StrFormat("x_%d_%d", i, b));
    }
  }

  // Constraints.
  // Each item is assigned to at most one bin.
  for (int i : all_items) {
    std::vector<BoolVar> copies;
    for (int b : all_bins) {
      copies.push_back(x[std::make_tuple(i, b)]);
    }
    cp_model.AddAtMostOne(copies);
  }

  // The amount packed in each bin cannot exceed its capacity.
  for (int b : all_bins) {
    LinearExpr bin_weight;
    for (int i : all_items) {
      bin_weight += x[std::make_tuple(i, b)] * weights[i];
    }
    cp_model.AddLessOrEqual(bin_weight, bin_capacities[b]);
  }

  // Objective.
  // Maximize total value of packed items.
  LinearExpr objective;
  for (int i : all_items) {
    for (int b : all_bins) {
      objective += x[std::make_tuple(i, b)] * values[i];
    }
  }
  cp_model.Maximize(objective);

  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    LOG(INFO) << "Total packed value: " << response.objective_value();
    double total_weight = 0.0;
    for (int b : all_bins) {
      LOG(INFO) << "Bin " << b;
      double bin_weight = 0.0;
      double bin_value = 0.0;
      for (int i : all_items) {
        auto key = std::make_tuple(i, b);
        if (SolutionIntegerValue(response, x[key]) > 0) {
          LOG(INFO) << "Item " << i << " weight: " << weights[i]
                    << " value: " << values[i];
          bin_weight += weights[i];
          bin_value += values[i];
        }
      }
      LOG(INFO) << "Packed bin weight: " << bin_weight;
      LOG(INFO) << "Packed bin value: " << bin_value;
      total_weight += bin_weight;
    }
    LOG(INFO) << "Total packed weight: " << total_weight;
  } else {
    LOG(INFO) << "The problem does not have an optimal solution.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}
}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::MultipleKnapsackSat();
  return EXIT_SUCCESS;
}

لغة Java

// Solves a multiple knapsack problem using the CP-SAT solver.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Sample showing how to solve a multiple knapsack problem. */
public class MultipleKnapsackSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final int[] weights = {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
    final int[] values = {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
    final int numItems = weights.length;
    final int[] allItems = IntStream.range(0, numItems).toArray();

    final int[] binCapacities = {100, 100, 100, 100, 100};
    final int numBins = binCapacities.length;
    final int[] allBins = IntStream.range(0, numBins).toArray();

    CpModel model = new CpModel();

    // Variables.
    Literal[][] x = new Literal[numItems][numBins];
    for (int i : allItems) {
      for (int b : allBins) {
        x[i][b] = model.newBoolVar("x_" + i + "_" + b);
      }
    }

    // Constraints.
    // Each item is assigned to at most one bin.
    for (int i : allItems) {
      List<Literal> bins = new ArrayList<>();
      for (int b : allBins) {
        bins.add(x[i][b]);
      }
      model.addAtMostOne(bins);
    }

    // The amount packed in each bin cannot exceed its capacity.
    for (int b : allBins) {
      LinearExprBuilder load = LinearExpr.newBuilder();
      for (int i : allItems) {
        load.addTerm(x[i][b], weights[i]);
      }
      model.addLessOrEqual(load, binCapacities[b]);
    }

    // Objective.
    // Maximize total value of packed items.
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int i : allItems) {
      for (int b : allBins) {
        obj.addTerm(x[i][b], values[i]);
      }
    }
    model.maximize(obj);

    CpSolver solver = new CpSolver();
    final CpSolverStatus status = solver.solve(model);

    // Check that the problem has an optimal solution.
    if (status == CpSolverStatus.OPTIMAL) {
      System.out.println("Total packed value: " + solver.objectiveValue());
      long totalWeight = 0;
      for (int b : allBins) {
        long binWeight = 0;
        long binValue = 0;
        System.out.println("Bin " + b);
        for (int i : allItems) {
          if (solver.booleanValue(x[i][b])) {
            System.out.println("Item " + i + " weight: " + weights[i] + " value: " + values[i]);
            binWeight += weights[i];
            binValue += values[i];
          }
        }
        System.out.println("Packed bin weight: " + binWeight);
        System.out.println("Packed bin value: " + binValue);
        totalWeight += binWeight;
      }
      System.out.println("Total packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }

  private MultipleKnapsackSat() {}
}

#C

// Solves a multiple knapsack problem using the CP-SAT solver.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class MultipleKnapsackSat
{
    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        int[] Weights = { 48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36 };
        int[] Values = { 10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25 };
        int NumItems = Weights.Length;
        int[] allItems = Enumerable.Range(0, NumItems).ToArray();

        int[] BinCapacities = { 100, 100, 100, 100, 100 };
        int NumBins = BinCapacities.Length;
        int[] allBins = Enumerable.Range(0, NumBins).ToArray();

        // Model.
        CpModel model = new CpModel();

        // Variables.
        ILiteral[,] x = new ILiteral[NumItems, NumBins];
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                x[i, b] = model.NewBoolVar($"x_{i}_{b}");
            }
        }

        // Constraints.
        // Each item is assigned to at most one bin.
        foreach (int i in allItems)
        {
            List<ILiteral> literals = new List<ILiteral>();
            foreach (int b in allBins)
            {
                literals.Add(x[i, b]);
            }
            model.AddAtMostOne(literals);
        }

        // The amount packed in each bin cannot exceed its capacity.
        foreach (int b in allBins)
        {
            List<ILiteral> items = new List<ILiteral>();
            foreach (int i in allItems)
            {
                items.Add(x[i, b]);
            }
            model.Add(LinearExpr.WeightedSum(items, Weights) <= BinCapacities[b]);
        }

        // Objective.
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int i in allItems)
        {
            foreach (int b in allBins)
            {
                obj.AddTerm(x[i, b], Values[i]);
            }
        }
        model.Maximize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total packed value: {solver.ObjectiveValue}");
            double TotalWeight = 0.0;
            foreach (int b in allBins)
            {
                double BinWeight = 0.0;
                double BinValue = 0.0;
                Console.WriteLine($"Bin {b}");
                foreach (int i in allItems)
                {
                    if (solver.BooleanValue(x[i, b]))
                    {
                        Console.WriteLine($"Item {i} weight: {Weights[i]} values: {Values[i]}");
                        BinWeight += Weights[i];
                        BinValue += Values[i];
                    }
                }
                Console.WriteLine("Packed bin weight: " + BinWeight);
                Console.WriteLine("Packed bin value: " + BinValue);
                TotalWeight += BinWeight;
            }
            Console.WriteLine("Total packed weight: " + TotalWeight);
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}