ज़्यादा से ज़्यादा फ़्लो की समस्या से काफ़ी हद तक कम से कम लागत (कम से कम लागत) जुड़ी हुई है फ़्लो प्रॉब्लम, जिसमें ग्राफ़ में मौजूद हर चाप के ट्रांसपोर्टेशन में लगने वाला खर्च एक यूनिट होती है बहुत ज़रूरी है. समस्या कम से कम कुल लागत वाले फ़्लो का पता लगाने में है.
कम से कम लागत फ़्लो की समस्या में खास नोड भी होते हैं. इन्हें सप्लाई नोड या मांग कहा जाता है नोड, जो सोर्स से मिलते-जुलते होते हैं और ज़्यादा से ज़्यादा फ़्लो की समस्या. कॉन्टेंट को सप्लाई नोड से मांग नोड में ले जाया जाता है.
- सप्लाई नोड पर, एक पॉज़िटिव मात्रा — सप्लाई — को जोड़ा जाता है फ़्लो को कम कर दें. उदाहरण के लिए, सप्लाई उस नोड पर प्रोडक्शन दिखा सकती है.
- मांग नोड पर, एक नेगेटिव रकम — मांग — ली जाती है साफ़-साफ़ दिखना चाहिए. मांग के हिसाब से उस नोड में खपत के बारे में बताया जा सकता है उदाहरण के लिए.
सुविधा के लिए, हम यह मान लेंगे कि सप्लाई या डिमांड नोड को छोड़कर, सभी नोड शून्य सप्लाई (और मांग) है.
कम से कम लागत प्रवाह की समस्या के लिए, हमारे पास प्रवाह संरक्षण का यह नियम है, इसमें सप्लाई और मांग को ध्यान में रखा जाता है:
नीचे दिया गया ग्राफ़ कम से कम लागत प्रवाह से जुड़ी समस्या दिखाता है. चापों (आर्क) पर जोड़े का लेबल होता है संख्याओं का: पहला नंबर कपैसिटी का होता है और दूसरा नंबर लागत. नोड के बगल में मौजूद ब्रैकेट में, सप्लाई या मांग के बारे में बताया गया है. नोड 0, सप्लाई 20 वाला सप्लाई नोड है. वहीं, नोड 3 और 4 डिमांड नोड हैं. मांग -5 और -15 होती है.
लाइब्रेरी इंपोर्ट करें
यहां दिया गया कोड ज़रूरी लाइब्रेरी इंपोर्ट करता है.
Python
import numpy as np from ortools.graph.python import min_cost_flow
C++
#include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h"
Java
import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase;
C#
using System; using Google.OrTools.Graph;
सॉल्वर के बारे में बताओ
समस्या को हल करने के लिए, हम SimpleMinCostFlow सॉल्वर.
Python
# Instantiate a SimpleMinCostFlow solver. smcf = min_cost_flow.SimpleMinCostFlow()
C++
// Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow;
Java
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
C#
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
डेटा तय करना
नीचे दिया गया कोड, समस्या का डेटा बताता है. इस मामले में, शुरुआती नोड, एंड नोड, कपैसिटी, और यूनिट की लागत के लिए चार कलेक्शन. फिर से, सरणियों की लंबाई, ग्राफ़ में चाप की संख्या होती है.
Python
# Define four parallel arrays: sources, destinations, capacities, # and unit costs between each pair. For instance, the arc from node 0 # to node 1 has a capacity of 15. start_nodes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 4]) end_nodes = np.array([1, 2, 2, 3, 4, 3, 4, 4, 2]) capacities = np.array([15, 8, 20, 4, 10, 15, 4, 20, 5]) unit_costs = np.array([4, 4, 2, 2, 6, 1, 3, 2, 3]) # Define an array of supplies at each node. supplies = [20, 0, 0, -5, -15]
C++
// Define four parallel arrays: sources, destinations, capacities, // and unit costs between each pair. For instance, the arc from node 0 // to node 1 has a capacity of 15. std::vector<int64_t> start_nodes = {0, 0, 1, 1, 1, 2, 2, 3, 4}; std::vector<int64_t> end_nodes = {1, 2, 2, 3, 4, 3, 4, 4, 2}; std::vector<int64_t> capacities = {15, 8, 20, 4, 10, 15, 4, 20, 5}; std::vector<int64_t> unit_costs = {4, 4, 2, 2, 6, 1, 3, 2, 3}; // Define an array of supplies at each node. std::vector<int64_t> supplies = {20, 0, 0, -5, -15};
Java
// Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 15. // Problem taken From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 1, 1, 1, 2, 2, 3, 4}; int[] endNodes = new int[] {1, 2, 2, 3, 4, 3, 4, 4, 2}; int[] capacities = new int[] {15, 8, 20, 4, 10, 15, 4, 20, 5}; int[] unitCosts = new int[] {4, 4, 2, 2, 6, 1, 3, 2, 3}; // Define an array of supplies at each node. int[] supplies = new int[] {20, 0, 0, -5, -15};
C#
// Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 15. // Problem taken From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 }; int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 }; int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 }; int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 }; // Define an array of supplies at each node. int[] supplies = { 20, 0, 0, -5, -15 };
चापों को जोड़ना
हर स्टार्ट नोड और एंड नोड के लिए, हम स्टार्ट नोड से एंड नोड तक एक आर्क बनाते हैं तरीके का इस्तेमाल करके, दी गई कपैसिटी और इकाई की कीमत के साथ AddArcWithCapacityAndUnitCost को सेट अप करने की सुविधा.
समाधानकर्ता SetNodeSupply तरीके, नोड के लिए सप्लाई का वेक्टर बनाता है.
Python
# Add arcs, capacities and costs in bulk using numpy. all_arcs = smcf.add_arcs_with_capacity_and_unit_cost( start_nodes, end_nodes, capacities, unit_costs ) # Add supply for each nodes. smcf.set_nodes_supplies(np.arange(0, len(supplies)), supplies)
C++
// Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); }
Java
// Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); }
C#
// Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); }
सॉल्वर आज़माएं
अब जब सभी चापों को परिभाषित किया जा चुका है, तो अब बस आपको
और नतीजों को दिखाया जा सकता है. हम Solve()
तरीके को शुरू करते हैं.
Python
# Find the min cost flow. status = smcf.solve()
C++
// Find the min cost flow. int status = min_cost_flow.Solve();
Java
// Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve();
C#
// Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve();
नतीजे दिखाएं
अब हम हर आर्क का फ़्लो और कीमत दिखा सकते हैं.
Python
if status != smcf.OPTIMAL: print("There was an issue with the min cost flow input.") print(f"Status: {status}") exit(1) print(f"Minimum cost: {smcf.optimal_cost()}") print("") print(" Arc Flow / Capacity Cost") solution_flows = smcf.flows(all_arcs) costs = solution_flows * unit_costs for arc, flow, cost in zip(all_arcs, solution_flows, costs): print( f"{smcf.tail(arc):1} -> {smcf.head(arc)} {flow:3} / {smcf.capacity(arc):3} {cost}" )
C++
if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Minimum cost flow: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity Cost"; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { int64_t cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i); LOG(INFO) << min_cost_flow.Tail(i) << " -> " << min_cost_flow.Head(i) << " " << min_cost_flow.Flow(i) << " / " << min_cost_flow.Capacity(i) << " " << cost; } } else { LOG(INFO) << "Solving the min cost flow problem failed. Solver status: " << status; }
Java
if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Minimum cost: " + minCostFlow.getOptimalCost()); System.out.println(); System.out.println(" Edge Flow / Capacity Cost"); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { long cost = minCostFlow.getFlow(i) * minCostFlow.getUnitCost(i); System.out.println(minCostFlow.getTail(i) + " -> " + minCostFlow.getHead(i) + " " + minCostFlow.getFlow(i) + " / " + minCostFlow.getCapacity(i) + " " + cost); } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); }
C#
if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); Console.WriteLine(" Edge Flow / Capacity Cost"); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i); Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + " " + string.Format("{0,3}", minCostFlow.Flow(i)) + " / " + string.Format("{0,3}", minCostFlow.Capacity(i)) + " " + string.Format("{0,3}", cost)); } } else { Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + status); }
यहां Python प्रोग्राम का आउटपुट दिया गया है:
Minimum cost: 150 Arc Flow / Capacity Cost 0 -> 1 12 / 15 48 0 -> 2 8 / 8 32 1 -> 2 8 / 20 16 1 -> 3 4 / 4 8 1 -> 4 0 / 10 0 2 -> 3 12 / 15 12 2 -> 4 4 / 4 12 3 -> 4 11 / 20 22 4 -> 2 0 / 5 0
प्रोग्राम पूरे करें
कुल मिलाकर, यहां सभी प्रोग्राम दिए गए हैं.
Python
"""From Bradley, Hax and Maganti, 'Applied Mathematical Programming', figure 8.1.""" import numpy as np from ortools.graph.python import min_cost_flow def main(): """MinCostFlow simple interface example.""" # Instantiate a SimpleMinCostFlow solver. smcf = min_cost_flow.SimpleMinCostFlow() # Define four parallel arrays: sources, destinations, capacities, # and unit costs between each pair. For instance, the arc from node 0 # to node 1 has a capacity of 15. start_nodes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 4]) end_nodes = np.array([1, 2, 2, 3, 4, 3, 4, 4, 2]) capacities = np.array([15, 8, 20, 4, 10, 15, 4, 20, 5]) unit_costs = np.array([4, 4, 2, 2, 6, 1, 3, 2, 3]) # Define an array of supplies at each node. supplies = [20, 0, 0, -5, -15] # Add arcs, capacities and costs in bulk using numpy. all_arcs = smcf.add_arcs_with_capacity_and_unit_cost( start_nodes, end_nodes, capacities, unit_costs ) # Add supply for each nodes. smcf.set_nodes_supplies(np.arange(0, len(supplies)), supplies) # Find the min cost flow. status = smcf.solve() if status != smcf.OPTIMAL: print("There was an issue with the min cost flow input.") print(f"Status: {status}") exit(1) print(f"Minimum cost: {smcf.optimal_cost()}") print("") print(" Arc Flow / Capacity Cost") solution_flows = smcf.flows(all_arcs) costs = solution_flows * unit_costs for arc, flow, cost in zip(all_arcs, solution_flows, costs): print( f"{smcf.tail(arc):1} -> {smcf.head(arc)} {flow:3} / {smcf.capacity(arc):3} {cost}" ) if __name__ == "__main__": main()
C++
// From Bradley, Hax and Maganti, 'Applied Mathematical Programming', figure 8.1 #include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h" namespace operations_research { // MinCostFlow simple interface example. void SimpleMinCostFlowProgram() { // Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow; // Define four parallel arrays: sources, destinations, capacities, // and unit costs between each pair. For instance, the arc from node 0 // to node 1 has a capacity of 15. std::vector<int64_t> start_nodes = {0, 0, 1, 1, 1, 2, 2, 3, 4}; std::vector<int64_t> end_nodes = {1, 2, 2, 3, 4, 3, 4, 4, 2}; std::vector<int64_t> capacities = {15, 8, 20, 4, 10, 15, 4, 20, 5}; std::vector<int64_t> unit_costs = {4, 4, 2, 2, 6, 1, 3, 2, 3}; // Define an array of supplies at each node. std::vector<int64_t> supplies = {20, 0, 0, -5, -15}; // Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. int status = min_cost_flow.Solve(); if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Minimum cost flow: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity Cost"; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { int64_t cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i); LOG(INFO) << min_cost_flow.Tail(i) << " -> " << min_cost_flow.Head(i) << " " << min_cost_flow.Flow(i) << " / " << min_cost_flow.Capacity(i) << " " << cost; } } else { LOG(INFO) << "Solving the min cost flow problem failed. Solver status: " << status; } } } // namespace operations_research int main() { operations_research::SimpleMinCostFlowProgram(); return EXIT_SUCCESS; }
Java
// From Bradley, Hax, and Maganti, 'Applied Mathematical Programming', figure 8.1. package com.google.ortools.graph.samples; import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase; /** Minimal MinCostFlow program. */ public class SimpleMinCostFlowProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 15. // Problem taken From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 1, 1, 1, 2, 2, 3, 4}; int[] endNodes = new int[] {1, 2, 2, 3, 4, 3, 4, 4, 2}; int[] capacities = new int[] {15, 8, 20, 4, 10, 15, 4, 20, 5}; int[] unitCosts = new int[] {4, 4, 2, 2, 6, 1, 3, 2, 3}; // Define an array of supplies at each node. int[] supplies = new int[] {20, 0, 0, -5, -15}; // Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve(); if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Minimum cost: " + minCostFlow.getOptimalCost()); System.out.println(); System.out.println(" Edge Flow / Capacity Cost"); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { long cost = minCostFlow.getFlow(i) * minCostFlow.getUnitCost(i); System.out.println(minCostFlow.getTail(i) + " -> " + minCostFlow.getHead(i) + " " + minCostFlow.getFlow(i) + " / " + minCostFlow.getCapacity(i) + " " + cost); } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); } } private SimpleMinCostFlowProgram() {} }
C#
// From Bradley, Hax, and Magnanti, 'Applied Mathematical Programming', figure 8.1. using System; using Google.OrTools.Graph; public class SimpleMinCostFlowProgram { static void Main() { // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 15. // Problem taken From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 }; int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 }; int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 }; int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 }; // Define an array of supplies at each node. int[] supplies = { 20, 0, 0, -5, -15 }; // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve(); if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); Console.WriteLine(" Edge Flow / Capacity Cost"); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i); Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + " " + string.Format("{0,3}", minCostFlow.Flow(i)) + " / " + string.Format("{0,3}", minCostFlow.Capacity(i)) + " " + string.Format("{0,3}", cost)); } } else { Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + status); } } }