Dans le problème de sac à dos, vous devez emballer un ensemble d'articles, avec des valeurs données. et de tailles spécifiques (comme les poids ou les volumes), dans un conteneur ayant une capacité maximale pour en savoir plus. Si la taille totale des articles dépasse la capacité autorisée, vous ne pouvez pas tous les emballer. Dans ce cas, le problème est de choisir un sous-ensemble des éléments de la valeur adaptée au conteneur.
Les sections suivantes expliquent comment résoudre un problème de sac à dos à l'aide de OR-Tools.
Exemple
Voici une représentation graphique d'un problème de sac à dos:
Dans l'animation ci-dessus, 50
éléments sont regroupés dans un bin. Chaque élément a une valeur
(le numéro figurant sur l'article) et un poids (à peu près proportionnel à l'aire de la
élément).
La capacité du bin est déclarée comme suit : 850
. Notre objectif est de trouver l'ensemble
d'articles qui maximiseront la valeur
totale sans dépasser la capacité.
Les sections suivantes décrivent des programmes qui résolvent un problème de sac à dos. Pour connaître les programmes complets, consultez l'article Terminer les programmes.
Importer les bibliothèques
Le code suivant importe les bibliothèques requises.
Python
from ortools.algorithms.python import knapsack_solver
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList;
C#
using System; using Google.OrTools.Algorithms;
Créer les données
Le code ci-dessous crée les données relatives au problème.
Python
values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850]
C++
std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850};
Java
final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850};
C#
long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 };
Ces données incluent les éléments suivants:
weights
: vecteur contenant les pondérations des éléments.values
: vecteur contenant les valeurs des éléments.capacities
: vecteur ne comportant qu'une seule entrée, à savoir la capacité du sac à dos.
Déclarer le résolveur
Le code suivant déclare le résolveur de sac à dos, un outil de résolution spécialisé pour problèmes de sac à dos.
Python
solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", )
C++
KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
Java
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");
C#
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
L'option KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER
indique au résolveur de
utiliser l'algorithme de branche et lié pour résoudre le problème.
Appeler le résolveur
Le code suivant appelle le résolveur et affiche la solution.
Python
solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights)
C++
solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
Java
solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights);
C#
solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue);
Le programme initialise d'abord le résolveur, puis l'appelle en
computed_value = solver.Solve()
La valeur totale de la solution optimale est de computed_value
, ce qui est identique
pour la pondération totale. Le programme obtient ensuite les index
empaquetés dans la solution, comme suit:
packed_items = [x for x in range(0, len(weights[0])) if solver.BestSolutionContains(x)]Puisque "solver.BestSolutionContains(x)" renvoie "TRUE" si l'élément x est inclus de la solution, "Package_items" est une liste des éléments empaquetés optimaux. De même, "package_weights" représente la pondération des articles empaquetés. ### Résultat du programme Voici la sortie du programme.
Total value = 7534 Total weight: 850 Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31, 32, 34, 38, 39, 41, 42, 44, 47, 48, 49] Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4, 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]
Terminer les programmes
Vous trouverez ci-dessous les programmes complets qui résolvent le problème du sac à dos.
Python
from ortools.algorithms.python import knapsack_solver def main(): # Create the solver. solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", ) values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850] solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h" namespace operations_research { void RunKnapsackExample() { // Instantiate the solver. KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850}; solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); // Print solution std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}"; } } // namespace operations_research int main(int argc, char** argv) { operations_research::RunKnapsackExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.algorithms.samples; import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList; /** * Sample showing how to model using the knapsack solver. */ public class Knapsack { private Knapsack() {} private static void solve() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test"); final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850}; solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); Knapsack.solve(); } }
C#
using System; using Google.OrTools.Algorithms; public class Knapsack { static void Main() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 }; solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue); } }