車両ルーティングの問題の多くは、特定の時間枠にしか対応できない顧客に訪問をスケジュールすることに関連しています。
こうした問題は、時間枠付きの車両ルート選択問題(VRPTW)と呼ばれます。
VRPTW の例
このページでは、VRPTW の解法の例を紹介します。問題には時間ウィンドウが関係するため、データには(前の例のような距離行列ではなく)位置間の移動時間を含む時間行列が含まれます。
下の図は、訪問先の場所を青色、デポを黒色で示しています。時間枠は各場所の上に表示されます。位置の定義方法について詳しくは、VRP セクションの位置座標をご覧ください。
目標は、車両の合計移動時間を最小限に抑えることです。
OR-Tools を使用して VRPTW の例を解く
以降のセクションでは、OR-Tools を使用して VRPTW の例を解く方法について説明します。
データを作成する
次の関数は、問題のデータを作成します。
Python
def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return dataデータは次のもので構成されます。
-
data['time_matrix']
: 場所間の移動時間の配列。これは、距離行列を使用する前述の例とは異なります。すべての車両が同じ速度で移動する場合、移動距離は移動時間の定数倍であるため、距離行列または時間行列を使用すると同じ解が得られます。 -
data['time_windows']
: ビジネスの時間枠の配列。訪問のリクエスト時間と考えることができます。車両は、期間内に訪問する必要があります。 -
data['num_vehicles']
: フリート内の車両の台数。 -
data['depot']
: デポのインデックス。
C++
struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; };データは次のもので構成されます。
-
time_matrix
: 場所間の移動時間の配列。これは、距離行列を使用する前述の例とは異なります。すべての車両が同じ速度で移動する場合、移動距離は移動時間の定数倍であるため、距離行列または時間行列を使用すると同じ解が得られます。 -
time_windows
: ビジネスの時間枠の配列。訪問のリクエスト時間と考えることができます。車両は、期間内に訪問する必要があります。 -
num_vehicles
: フリート内の車両の台数。 -
depot
: デポのインデックス。
Java
static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; }データは次のもので構成されます。
-
timeMatrix
: 場所間の移動時間の配列。これは、距離行列を使用する前述の例とは異なります。すべての車両が同じ速度で移動する場合、移動距離は移動時間の定数倍であるため、距離行列または時間行列を使用すると同じ解が得られます。 -
timeWindows
: ビジネスの時間枠の配列。訪問のリクエスト時間と考えることができます。車両は、期間内に訪問する必要があります。 -
vehicleNumber
: フリート内の車両の台数。 -
depot
: デポのインデックス。
C#
class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; };データは次のもので構成されます。
-
TimeMatrix
: 場所間の移動時間の配列。これは、距離行列を使用する前述の例とは異なります。すべての車両が同じ速度で移動する場合、移動距離は移動時間の定数倍であるため、距離行列または時間行列を使用すると同じ解が得られます。 -
TimeWindows
: ビジネスの時間枠の配列。訪問のリクエスト時間と考えることができます。車両は、期間内に訪問する必要があります。 -
VehicleNumber
: フリート内の車両の台数。 -
Depot
: デポのインデックス。
コールバックの時間
次の関数は時刻のコールバックを作成し、ソルバーに渡します。また、移動費用を定義するアークコストを、ロケーション間の移動時間として設定します。
Python
def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
C++
const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
Java
final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
C#
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
時間枠の制約を追加する
次のコードは、すべてのロケーションに時間枠の制約を追加します。
Python
time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))
C++
const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); }
Java
routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); }
C#
routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); }
このコードは、前の例の移動距離または需要のディメンションと同様に、車両の移動時間のディメンションを作成します。ディメンションにより、車両のルート全体で蓄積された数量を追跡できます。上記のコードの場合、time_dimension.CumulVar(index)
は、車両が指定された index
の場所に到着したときの累積移動時間です。
ディメンションは、次の引数を持つ AddDimension
メソッドを使用して作成されます。
- 移動時間コールバックのインデックス:
transit_callback_index
- スラック(ロケーションでの待ち時間)の上限は
30
です。CVRP の例では 0 に設定されていますが、VRPTW では時間枠の制約により正の待機時間を許可する必要があります。 - 各車両のルートの合計時間の上限:
30
- 各車両のルートの開始時に累積変数がゼロに設定されるかどうかを指定するブール値の変数。
- ディメンションの名前。
次に
Python
for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
C++
for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); }
Java
for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); }
C#
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); }
車両がその場所の時間帯内に訪問する必要があるとします。
検索パラメータを設定する
次のコードでは、最初の検索パラメータを見つけるためのデフォルトの検索パラメータとヒューリスティック メソッドを設定しています。
Python
search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC )
C++
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC);
Java
RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build();
C#
RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
ソリューション プリンタを追加する
解答を表示する関数を以下に示します。
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); }
次のセクションで説明するように、このソリューションにより、車両ルートと、場所ごとにソリューション ウィンドウが表示されます。
ソリューション ウィンドウ
ロケーションでのソリューション ウィンドウは、スケジュールを守るために車両が到着する期間です。ソリューション ウィンドウはロケーションの制約時間枠に含まれ、通常はそれよりも短くなります。
上記の解答プリンタ関数では、(assignment.Min(time_var), assignment.Max(time_var)
によって解答ウィンドウが返されます。ここで、time_var = time_dimension.CumulVar(index)
は、該当地点における車両の累積移動時間です。
time_var
の最小値と最大値が同じ場合、解答ウィンドウは単一の時点になります。つまり、車両が到着したらすぐに車両はその場所から出発する必要があります。一方、最小値が最大値より小さい場合、車両は出発前に待機できます。
プログラムの実行セクションで、この例のソリューション ウィンドウについて説明します。
解決する
この例のメイン関数は、TSP の例の場合と類似しています。
Python
solution = routing.SolveWithParameters(search_parameters)
C++
const Assignment* solution = routing.SolveWithParameters(searchParameters);
Java
Assignment solution = routing.solveWithParameters(searchParameters);
C#
Assignment solution = routing.SolveWithParameters(searchParameters);
プログラムの実行
プログラムを実行すると、次の出力が表示されます。
Route for vehicle 0: 0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8) -> 16 Time(11,11) -> 0 Time(18,18) Time of the route: 18min Route for vehicle 1: 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24) Time of the route: 24min Route for vehicle 2: 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Route for vehicle 3: 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Total time of all routes: 82min
ルート上の各地点について、Time(a,b)
は解決策の時間枠です。目的地を訪問する車両は、スケジュールを守るため、その時間間隔内に訪問する必要があります。
例として、車両 0 のルートの次の部分を見てみましょう。
0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)
ロケーション 9 では、解答ウィンドウは Time(2,3)
です。つまり、車両は時間 2 と 3 の間に到着する必要があります。解答ウィンドウは、問題データに示されたその場所((0, 3)
)の制約時間枠に含まれています。解答ウィンドウは、デポからロケーション 9 に到達するまでに 2 単位の時間(時間行列の 0、9 のエントリ)が必要なため、時間 2 から始まります。
車両はなぜ場所 9 から場所 2 から 3 までの間で出発できるのですか?これは、ロケーション 9 からロケーション 14 までの移動時間が 3 であるため、車両が 3 より前に出発すると、時間 6 より前にロケーション 14 に到着することになり、訪問のタイミングが早すぎるためです。そのため、車両はどこかで待機する必要があります。たとえば、ドライバーはルートの完了を遅らせることなく、場所 9 で時間 3 まで待機することを決定できます。
一部のソリューション ウィンドウ(例: 9 と 14)では開始時間と終了時間が異なりますが、他のソリューション ウィンドウ(ルート 2 と 3 など)では開始時間と終了時間が同じです。前者の場合、車両は窓の終わりまで出発してから出発できます。後者の場合は、到着後すぐに出発する必要があります。
ソリューション ウィンドウをリストまたは配列に保存する
TSP セクションでは、リストまたは配列のソリューションにルートを保存する方法について説明します。VRPTW の場合は、ソリューション ウィンドウを保存することもできます。以下の関数は、解答ウィンドウをリスト(Python)または配列(C++)に保存します。
Python
def get_cumul_data(solution, routing, dimension): """Get cumulative data from a dimension and store it in an array.""" # Returns an array cumul_data whose i,j entry contains the minimum and # maximum of CumulVar for the dimension at the jth node on route : # - cumul_data[i][j][0] is the minimum. # - cumul_data[i][j][1] is the maximum. cumul_data = [] for route_nbr in range(routing.vehicles()): route_data = [] index = routing.Start(route_nbr) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) while not routing.IsEnd(index): index = solution.Value(routing.NextVar(index)) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) cumul_data.append(route_data) return cumul_data
C++
std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData( const Assignment& solution, const RoutingModel& routing, const RoutingDimension& dimension) { // Returns an array cumul_data, whose i, j entry is a pair containing // the minimum and maximum of CumulVar for the dimension.: // - cumul_data[i][j].first is the minimum. // - cumul_data[i][j].second is the maximum. std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data( routing.vehicles()); for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) { int64_t index = routing.Start(vehicle_id); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); while (!routing.IsEnd(index)) { index = solution.Value(routing.NextVar(index)); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); } } return cumul_data; }
この関数は、時間だけでなく、あらゆるディメンションの累積データの最小値と最大値を保存します。現在の例では、これらの値はソリューション ウィンドウの下限と上限であり、関数に渡されるディメンションは time_dimension
です。
次の関数は、ルートと累積データから解を出力します。
Python
def print_solution(routes, cumul_data): """Print the solution.""" total_time = 0 route_str = "" for i, route in enumerate(routes): route_str += "Route " + str(i) + ":\n" start_time = cumul_data[i][0][0] end_time = cumul_data[i][0][1] route_str += ( " " + str(route[0]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) for j in range(1, len(route)): start_time = cumul_data[i][j][0] end_time = cumul_data[i][j][1] route_str += ( " -> " + str(route[j]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) route_str += f"\n Route time: {start_time}min\n\n" total_time += cumul_data[i][len(route) - 1][0] route_str += f"Total time: {total_time}min" print(route_str)
C++
void PrintSolution( const std::vector<std::vector<int>> routes, std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) { int64_t total_time{0}; std::ostringstream route; for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) { route << "\nRoute " << vehicle_id << ": \n"; route << " " << routes[vehicle_id][0] << " Time(" << cumul_data[vehicle_id][0].first << ", " << cumul_data[vehicle_id][0].second << ") "; for (int j = 1; j < routes[vehicle_id].size(); ++j) { route << "-> " << routes[vehicle_id][j] << " Time(" << cumul_data[vehicle_id][j].first << ", " << cumul_data[vehicle_id][j].second << ") "; } route << "\n Route time: " << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first << " minutes\n"; total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first; } route << "\nTotal travel time: " << total_time << " minutes"; LOG(INFO) << route.str(); }
プログラムを完了する
時間枠を使用した車両ルート選択問題の完全なプログラムを以下に示します。
Python
"""Vehicles Routing Problem (VRP) with Time Windows.""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min") def main(): """Solve the VRP with time windows.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["time_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Time Windows constraint. time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) # Instantiate route start and end times to produce feasible times. for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i))) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <string> #include <utility> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpTimeWindows() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Time constraint. const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpTimeWindows(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** VRPTW. */ public class VrpTimeWindows { private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName()); static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } } // [END_program_part1]
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Vehicles Routing Problem (VRP) with Time Windows. /// </summary> public class VrpTimeWindows { class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }