En las siguientes secciones, se presenta un ejemplo de un problema de MIP y se muestra cómo resolverlo. Este es el problema:
Maximizar x + 10y
sujeto a las siguientes restricciones:
x + 7y
≤ 17.5- 0 ≤
x
≤ 3.5 - 0 ≤
y
x
,y
números enteros
Dado que las restricciones son lineales, este es solo un problema de optimización lineal en el que las soluciones deben ser números enteros. En el siguiente gráfico, se muestran los puntos enteros en la región posible para el problema.
Ten en cuenta que este problema es muy similar al problema de optimización lineal descrito en Cómo resolver un problema de LP, pero, en este caso, se requiere que las soluciones sean números enteros.
Pasos básicos para resolver un problema del MIP
Para resolver un problema del MIP, el programa debe incluir los siguientes pasos:
- Importa el wrapper de resolución lineal.
- declara el solucionador de MIP,
- definir las variables,
- definir las restricciones,
- definir el objetivo
- llamar al solucionador de MIP y
- mostrar la solución
Solución con MPSolver
En la siguiente sección, se presenta un programa que resuelve el problema con el wrapper MPSolver y un solucionador de MIP.
El solucionador de MIP predeterminado de las herramientas OR es SCIP.
Importa el wrapper de resolución lineal
Importa (o incluye) el wrapper de resolución lineal de las herramientas OR, una interfaz para solucionadores de MIP y solucionadores lineales, como se muestra a continuación.
Python
from ortools.linear_solver import pywraplp
C++
#include <memory> #include "ortools/linear_solver/linear_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable;
C#
using System; using Google.OrTools.LinearSolver;
Cómo declarar el solucionador de MIP
En el siguiente código, se declara el solucionador de MIP para el problema. En este ejemplo, se usa el solucionador de problemas de terceros SCIP.
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SAT") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
// Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
Define las variables
El siguiente código define las variables en el problema.
Python
infinity = solver.infinity() # x and y are integer non-negative variables. x = solver.IntVar(0.0, infinity, "x") y = solver.IntVar(0.0, infinity, "y") print("Number of variables =", solver.NumVariables())
C++
const double infinity = solver->infinity(); // x and y are integer non-negative variables. MPVariable* const x = solver->MakeIntVar(0.0, infinity, "x"); MPVariable* const y = solver->MakeIntVar(0.0, infinity, "y"); LOG(INFO) << "Number of variables = " << solver->NumVariables();
Java
double infinity = java.lang.Double.POSITIVE_INFINITY; // x and y are integer non-negative variables. MPVariable x = solver.makeIntVar(0.0, infinity, "x"); MPVariable y = solver.makeIntVar(0.0, infinity, "y"); System.out.println("Number of variables = " + solver.numVariables());
C#
// x and y are integer non-negative variables. Variable x = solver.MakeIntVar(0.0, double.PositiveInfinity, "x"); Variable y = solver.MakeIntVar(0.0, double.PositiveInfinity, "y"); Console.WriteLine("Number of variables = " + solver.NumVariables());
El programa usa el método MakeIntVar
(o una variante, según el lenguaje de programación) para crear variables x
y y
que acepten valores enteros no negativos.
Define las restricciones
El siguiente código define las restricciones del problema.
Python
# x + 7 * y <= 17.5. solver.Add(x + 7 * y <= 17.5) # x <= 3.5. solver.Add(x <= 3.5) print("Number of constraints =", solver.NumConstraints())
C++
// x + 7 * y <= 17.5. MPConstraint* const c0 = solver->MakeRowConstraint(-infinity, 17.5, "c0"); c0->SetCoefficient(x, 1); c0->SetCoefficient(y, 7); // x <= 3.5. MPConstraint* const c1 = solver->MakeRowConstraint(-infinity, 3.5, "c1"); c1->SetCoefficient(x, 1); c1->SetCoefficient(y, 0); LOG(INFO) << "Number of constraints = " << solver->NumConstraints();
Java
// x + 7 * y <= 17.5. MPConstraint c0 = solver.makeConstraint(-infinity, 17.5, "c0"); c0.setCoefficient(x, 1); c0.setCoefficient(y, 7); // x <= 3.5. MPConstraint c1 = solver.makeConstraint(-infinity, 3.5, "c1"); c1.setCoefficient(x, 1); c1.setCoefficient(y, 0); System.out.println("Number of constraints = " + solver.numConstraints());
C#
// x + 7 * y <= 17.5. solver.Add(x + 7 * y <= 17.5); // x <= 3.5. solver.Add(x <= 3.5); Console.WriteLine("Number of constraints = " + solver.NumConstraints());
Define el objetivo
El siguiente código define el elemento objective function
del problema.
Python
# Maximize x + 10 * y. solver.Maximize(x + 10 * y)
C++
// Maximize x + 10 * y. MPObjective* const objective = solver->MutableObjective(); objective->SetCoefficient(x, 1); objective->SetCoefficient(y, 10); objective->SetMaximization();
Java
// Maximize x + 10 * y. MPObjective objective = solver.objective(); objective.setCoefficient(x, 1); objective.setCoefficient(y, 10); objective.setMaximization();
C#
// Maximize x + 10 * y. solver.Maximize(x + 10 * y);
Cómo llamar al solucionador
El siguiente código llama al solucionador.
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution!"; }
Java
final MPSolver.ResultStatus resultStatus = solver.solve();
C#
Solver.ResultStatus resultStatus = solver.Solve();
Muestra la solución
El siguiente código muestra la solución.
Python
if status == pywraplp.Solver.OPTIMAL: print("Solution:") print("Objective value =", solver.Objective().Value()) print("x =", x.solution_value()) print("y =", y.solution_value()) else: print("The problem does not have an optimal solution.")
C++
LOG(INFO) << "Solution:"; LOG(INFO) << "Objective value = " << objective->Value(); LOG(INFO) << "x = " << x->solution_value(); LOG(INFO) << "y = " << y->solution_value();
Java
if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Solution:"); System.out.println("Objective value = " + objective.value()); System.out.println("x = " + x.solutionValue()); System.out.println("y = " + y.solutionValue()); } else { System.err.println("The problem does not have an optimal solution!"); }
C#
// Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine("Solution:"); Console.WriteLine("Objective value = " + solver.Objective().Value()); Console.WriteLine("x = " + x.SolutionValue()); Console.WriteLine("y = " + y.SolutionValue());
Esta es la solución al problema.
Number of variables = 2 Number of constraints = 2 Solution: Objective value = 23 x = 3 y = 2
El valor óptimo de la función objetivo es 23, que se produce en el punto x = 3
, y = 2
.
Programas completos
Estos son los programas completos.
Python
from ortools.linear_solver import pywraplp def main(): # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SAT") if not solver: return infinity = solver.infinity() # x and y are integer non-negative variables. x = solver.IntVar(0.0, infinity, "x") y = solver.IntVar(0.0, infinity, "y") print("Number of variables =", solver.NumVariables()) # x + 7 * y <= 17.5. solver.Add(x + 7 * y <= 17.5) # x <= 3.5. solver.Add(x <= 3.5) print("Number of constraints =", solver.NumConstraints()) # Maximize x + 10 * y. solver.Maximize(x + 10 * y) print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print("Solution:") print("Objective value =", solver.Objective().Value()) print("x =", x.solution_value()) print("y =", y.solution_value()) else: print("The problem does not have an optimal solution.") print("\nAdvanced usage:") print(f"Problem solved in {solver.wall_time():d} milliseconds") print(f"Problem solved in {solver.iterations():d} iterations") print(f"Problem solved in {solver.nodes():d} branch-and-bound nodes") if __name__ == "__main__": main()
C++
#include <memory> #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void SimpleMipProgram() { // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } const double infinity = solver->infinity(); // x and y are integer non-negative variables. MPVariable* const x = solver->MakeIntVar(0.0, infinity, "x"); MPVariable* const y = solver->MakeIntVar(0.0, infinity, "y"); LOG(INFO) << "Number of variables = " << solver->NumVariables(); // x + 7 * y <= 17.5. MPConstraint* const c0 = solver->MakeRowConstraint(-infinity, 17.5, "c0"); c0->SetCoefficient(x, 1); c0->SetCoefficient(y, 7); // x <= 3.5. MPConstraint* const c1 = solver->MakeRowConstraint(-infinity, 3.5, "c1"); c1->SetCoefficient(x, 1); c1->SetCoefficient(y, 0); LOG(INFO) << "Number of constraints = " << solver->NumConstraints(); // Maximize x + 10 * y. MPObjective* const objective = solver->MutableObjective(); objective->SetCoefficient(x, 1); objective->SetCoefficient(y, 10); objective->SetMaximization(); const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution!"; } LOG(INFO) << "Solution:"; LOG(INFO) << "Objective value = " << objective->Value(); LOG(INFO) << "x = " << x->solution_value(); LOG(INFO) << "y = " << y->solution_value(); LOG(INFO) << "\nAdvanced usage:"; LOG(INFO) << "Problem solved in " << solver->wall_time() << " milliseconds"; LOG(INFO) << "Problem solved in " << solver->iterations() << " iterations"; LOG(INFO) << "Problem solved in " << solver->nodes() << " branch-and-bound nodes"; } } // namespace operations_research int main(int argc, char** argv) { operations_research::SimpleMipProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; /** Minimal Mixed Integer Programming example to showcase calling the solver. */ public final class SimpleMipProgram { public static void main(String[] args) { Loader.loadNativeLibraries(); // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } double infinity = java.lang.Double.POSITIVE_INFINITY; // x and y are integer non-negative variables. MPVariable x = solver.makeIntVar(0.0, infinity, "x"); MPVariable y = solver.makeIntVar(0.0, infinity, "y"); System.out.println("Number of variables = " + solver.numVariables()); // x + 7 * y <= 17.5. MPConstraint c0 = solver.makeConstraint(-infinity, 17.5, "c0"); c0.setCoefficient(x, 1); c0.setCoefficient(y, 7); // x <= 3.5. MPConstraint c1 = solver.makeConstraint(-infinity, 3.5, "c1"); c1.setCoefficient(x, 1); c1.setCoefficient(y, 0); System.out.println("Number of constraints = " + solver.numConstraints()); // Maximize x + 10 * y. MPObjective objective = solver.objective(); objective.setCoefficient(x, 1); objective.setCoefficient(y, 10); objective.setMaximization(); final MPSolver.ResultStatus resultStatus = solver.solve(); if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Solution:"); System.out.println("Objective value = " + objective.value()); System.out.println("x = " + x.solutionValue()); System.out.println("y = " + y.solutionValue()); } else { System.err.println("The problem does not have an optimal solution!"); } System.out.println("\nAdvanced usage:"); System.out.println("Problem solved in " + solver.wallTime() + " milliseconds"); System.out.println("Problem solved in " + solver.iterations() + " iterations"); System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes"); } private SimpleMipProgram() {} }
C#
using System; using Google.OrTools.LinearSolver; public class SimpleMipProgram { static void Main() { // Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } // x and y are integer non-negative variables. Variable x = solver.MakeIntVar(0.0, double.PositiveInfinity, "x"); Variable y = solver.MakeIntVar(0.0, double.PositiveInfinity, "y"); Console.WriteLine("Number of variables = " + solver.NumVariables()); // x + 7 * y <= 17.5. solver.Add(x + 7 * y <= 17.5); // x <= 3.5. solver.Add(x <= 3.5); Console.WriteLine("Number of constraints = " + solver.NumConstraints()); // Maximize x + 10 * y. solver.Maximize(x + 10 * y); Solver.ResultStatus resultStatus = solver.Solve(); // Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine("Solution:"); Console.WriteLine("Objective value = " + solver.Objective().Value()); Console.WriteLine("x = " + x.SolutionValue()); Console.WriteLine("y = " + y.SolutionValue()); Console.WriteLine("\nAdvanced usage:"); Console.WriteLine("Problem solved in " + solver.WallTime() + " milliseconds"); Console.WriteLine("Problem solved in " + solver.Iterations() + " iterations"); Console.WriteLine("Problem solved in " + solver.Nodes() + " branch-and-bound nodes"); } }
Comparación de la optimización lineal y de números enteros
Comparemos la solución con el problema de optimización de números enteros que se mostró antes con la solución del problema de optimización lineal correspondiente, en el que se quitan las restricciones de números enteros. Es posible que supongas que la solución para el problema de número entero sería el punto entero en la región posible más cercana a la solución lineal, es decir, el punto x = 0
, y = 2
. Pero, como verás a continuación,
este no es el caso.
Puedes modificar fácilmente el programa de la sección anterior para resolver el problema lineal con los siguientes cambios:
- Cómo reemplazar el solucionador de MIP
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SAT") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
// Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
Python
# Create the linear solver with the GLOP backend. solver = pywraplp.Solver.CreateSolver("GLOP") if not solver: return
C++
// Create the linear solver with the GLOP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("GLOP"));
Java
// Create the linear solver with the GLOP backend. MPSolver solver = MPSolver.createSolver("GLOP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
// Create the linear solver with the GLOP backend. Solver solver = Solver.CreateSolver("GLOP"); if (solver is null) { return; }
- Reemplaza las variables de números enteros
Python
infinity = solver.infinity() # x and y are integer non-negative variables. x = solver.IntVar(0.0, infinity, "x") y = solver.IntVar(0.0, infinity, "y") print("Number of variables =", solver.NumVariables())
C++
const double infinity = solver->infinity(); // x and y are integer non-negative variables. MPVariable* const x = solver->MakeIntVar(0.0, infinity, "x"); MPVariable* const y = solver->MakeIntVar(0.0, infinity, "y"); LOG(INFO) << "Number of variables = " << solver->NumVariables();
Java
double infinity = java.lang.Double.POSITIVE_INFINITY; // x and y are integer non-negative variables. MPVariable x = solver.makeIntVar(0.0, infinity, "x"); MPVariable y = solver.makeIntVar(0.0, infinity, "y"); System.out.println("Number of variables = " + solver.numVariables());
C#
// x and y are integer non-negative variables. Variable x = solver.MakeIntVar(0.0, double.PositiveInfinity, "x"); Variable y = solver.MakeIntVar(0.0, double.PositiveInfinity, "y"); Console.WriteLine("Number of variables = " + solver.NumVariables());
Python
infinity = solver.infinity() # Create the variables x and y. x = solver.NumVar(0.0, infinity, "x") y = solver.NumVar(0.0, infinity, "y") print("Number of variables =", solver.NumVariables())
C++
const double infinity = solver->infinity(); // Create the variables x and y. MPVariable* const x = solver->MakeNumVar(0.0, infinity, "x"); MPVariable* const y = solver->MakeNumVar(0.0, infinity, "y"); LOG(INFO) << "Number of variables = " << solver->NumVariables();
Java
double infinity = java.lang.Double.POSITIVE_INFINITY; // Create the variables x and y. MPVariable x = solver.makeNumVar(0.0, infinity, "x"); MPVariable y = solver.makeNumVar(0.0, infinity, "y"); System.out.println("Number of variables = " + solver.numVariables());
C#
// Create the variables x and y. Variable x = solver.MakeNumVar(0.0, double.PositiveInfinity, "x"); Variable y = solver.MakeNumVar(0.0, double.PositiveInfinity, "y"); Console.WriteLine("Number of variables = " + solver.NumVariables());
Después de realizar estos cambios y volver a ejecutar el programa, obtendrás el siguiente resultado:
Number of variables = 2 Number of constraints = 2 Objective value = 25.000000 x = 0.000000 y = 2.500000
La solución al problema lineal se produce en el punto x = 0
, y = 2.5
, donde la función objetivo es igual a 25. A continuación, se muestra un gráfico con las soluciones a los problemas lineales y de números enteros.
Ten en cuenta que la solución de números enteros no es cercana a la solución lineal, en comparación con la mayoría de los otros puntos de números enteros en la región posible. En general, las soluciones a un problema de optimización lineal y los problemas de optimización de números enteros correspondientes pueden diferir mucho. Debido a esto, los dos tipos de problemas requieren métodos diferentes para su solución.